Character methods and probabilistic methods in groups

Lecture by Aner Shalev Notes by Dustan Levenstein

Alternative title: Applications of representations in probabilistic group theory. We can translate some ideas from representation theory into statements in probabilistic group theory. We use words $w \in F_d$ in the free group on d letters, $w = w(x_1, \dots, x_d)$.

I. Toy case: commutator word

$$
[x_1, x_2] = x_1^{-1} x_2^{-1} x_1 x_2.
$$

II. General words (Larsen-Tiep-Shalev).

1 Commutators

Let G be a finite group,

$$
\alpha: G \times G \to G,
$$

$$
\alpha(x, y) = [x, y].
$$

Frobenius in 1896:

$$
|\alpha^{-1}(g)| = |G| \sum_{\chi \in \text{Irr } G} \frac{\chi(g)}{\chi(1)}.
$$

$$
P(g) := P_{\alpha,G}(g) = \frac{|\alpha^{-1}(g)|}{|G|} = \text{Prob}(g = [x, y]),
$$

given random elements $x, y \in G$. So

$$
P(g) = |G|^{-1} \sum_{\chi} \frac{\chi(g)}{\chi(1)}.
$$

Sarnak (2006): Cancellation phenomenon which says that the value of \sum χ $\frac{\chi(g)}{\chi(1)}$ is approximately 1, much smaller

than \sum χ $\begin{array}{c} \hline \rule{0pt}{2.2ex} \\ \rule{0pt}{2.2ex} \end{array}$ $\chi(g)$ $\chi(1)$.

$$
F_G(g) = \sum_{\chi \in \text{Irr } G} \frac{\chi(g)}{\chi(1)}.
$$

Remark $F_G(1) = k(G)$.

Shalev (2007) conjecture: If G is a finite simple group (FSG), and $g \in G$, then

- I. $F_G(g) \geq 1 o(1)$,
- II. If G is of Lie type of bounded rank and $1 \neq g \in G$ then $F_G(g) \leq 1 + o(1)$.

Liebeck-Shalev (2009): No! Counterexamples:

$$
PSL_3(q) \ni g
$$
 transvection

$$
F_G(g) = 2 + O(q^{-1})
$$

$$
PSU_3(q) \ni g
$$
 transvection

$$
F_G(g) = O(q^{-1})
$$

Conjecture: $F_G(g) \leq C$ for all FSG's G and $1 \neq g \in G$.

Wrong. Counterexamples:

Theorem 1.1 *(Tiep-Shalev, 2017)*

- *I.* There is $b > 0$ such that for $g \in S_n$, if $\mathrm{supp}(g) \le b\sqrt{n}/\log n$, then $F_{S_n}(g) \ge c^{\sqrt{n}}$ for any value of $c < e^{\pi}$ √ 2/3 *, provided* $n \gg 0$ *.*
- *II. There is* $b > 0$ *such that for* $g \in SL_n(q)$ *a transvection.*

Hence in both cases $F_G(g) \to \infty$ as $n \to \infty$.

Remark

$$
p(n) \sim \frac{1}{4n\sqrt{3}} e^{\pi \sqrt{2/3}\sqrt{n}} = k(S_n) = F_G(1)
$$

is a result of Hardy and Ramanujan from 1918, where $p(n)$ is the number of partitions of n.

Conjecture 1.2

$$
F_G(g) \le C(r)
$$

if G is a FSG of Lie type of rank r and $1 \neq g \in G$.

Garion-Shalev (2009): α is almost uniform on FSG's: $||P - U||_2^2 \to 0$ as $|G| \to \infty$, where U is the uniform distribution on G.

where

$$
P = |G|^{-1} \sum_{\chi} a_{\chi} \chi
$$

$$
a_{\chi} = \frac{1}{\chi(1)}.
$$

$$
||P - U||_2^2 = \sum |a_{\chi}|^2
$$

 $\chi{\neq}1$

for all G finite.

In the case $P = P_{\alpha,G}$, we have

$$
||P - U||_2^2 = \sum_{\chi \neq 1} \chi(1)^{-2}
$$

= $\zeta_G(2) - 1 \to 0$

where

$$
\zeta_G(s) = \sum \chi(1)^{-s}.
$$

Corollary 1.3 *For* G *a FSG,*

$$
\frac{\operatorname{Im}\alpha}{|G|} \to 1
$$

as

 $|G| \to \infty$,

i.e. almost all elements $g \in G$ *are commutators.*

Conjecture 1.4 *(Ore 1951) All elements of FSG's are commutators.*

Theorem 1.5 *(Liebeck-O'Brien-Shalev-Tiep "LOST" 2010) Ore's conjecture holds.*

Theorem 1.6 *(Guralnick-LOST "GLOST" 2018) If* $n = p^a q^b$ for primes p, q, then $x^n y^n$ is surjective on ALL FSG's.

Remark Recall Burnside's theorem that groups of this order *n* are solvable.

2 Word Maps

Let $w \in F_d$, $w = w(x_1, \ldots, x_d)$. If G is a group, then we associate the word map

$$
w = w_G : G^d \to G
$$

$$
(g_1, \ldots, g_d) \mapsto w(g_1, \ldots, g_d).
$$

Theorem 2.1 *(Borel 1983)*

Word maps on simple algebraic groups are dominant.

Theorem 2.2 *(Larsen-Tiep-Shalev 2011)*

If $w_1, w_2 \neq 1$ *are words in disjoint sets of variables, then there exists an* $N = N(w_1, w_2)$ *such that if* G *is a FSG with* $|G| \geq N$ *then*

$$
G = w_1(G) \cdot w_2(G).
$$

(Note that $w_1(G)$ should be taken as shorthand for $w_1(G^d)$ for d appropriate.)

Probabilistic aspects:

Let $w \in F_d$, $g \in G$ finite group.

$$
P_{w,G}(g) = \frac{|w^{-1}(g)|}{|G|^d} = \text{Prob}(w(g_1, \ldots, g_d) = g).
$$

Theorem 2.3 *(Larsen-Shalev 2012)*

$$
|P_{w,G}(g)| \le |G|^{-\epsilon + o(1)}
$$

for G a FSG and some $\epsilon = \epsilon(w) > 0$ *.*

Question: Which words are almost uniform on all FSG's?

Namely, for which words w we have $||p_{w,G} - U_G||_1 \to 0$ as $|G| \to \infty$ (we use the L^1 norm).

Probabilistic Waring Problem: Let $w_1, w_2 \neq 1$ be words in disjoint sets of variables. Then w_1w_2 is almost uniform on FSG's.

Positive evidence:

I. True for x^2y^2 (Garion-Shalev 2009),

II. True for $x^m y^n$ (Larsen-Shalev 2016)

Theorem 2.4 *(Larsen-Tiep-Shalev, 2018*+*) True in general: for* w_1, w_2 *as above,*

$$
||P_{w_1w_2,G} - U||_1 \to 0
$$

as

$$
|G| \to \infty
$$

for G *a FSG.*

Proof (sketch)

- I. Case A_n : 2008 Larsen-Shalev uses new character bounds and & free probability (Nica's Theorem).
- II. Groups of Lie type of bounded rank: Ingredients
	- (a) most elements are regular semisimple,
	- (b) $w_i(g_1, \ldots, g_d)$ is regular semisimple with probability approaching 1 (Borel & Lang-Weil),
	- (c) We compute the probability that $x_1x_2 = g$, for random $x_i \in C_i$, conjugacy classes of G.

$$
p(C_1, C_2, g) = |G|^{-1} \sum_{\chi} \chi(C_1) \chi(C_2) \chi(g^{-1}) / \chi(1)
$$

(d) $|\chi(g)| \le c(r)$ where g is regular semisimple and $c(r)$ is the rank.

Putting these pieces together and using $\zeta_G(s)$ eventually gives the proof in bounded rank.

III. Classical groups of rank $r \to \infty$

Important tool: two new papers by Guralnick-Larsen-Tiep 2017-2018 (Character levels & Character bounds). What is needed is: for every $\epsilon, c > 0$ there exists $f(\epsilon, c)$ such that for $G = G_r(q)$ classical of rank $r \ge f(\epsilon, c)$ and for $g \in G$ with $|C_G(g)| \leq q^{cr}$, we have $|\chi(g)| \leq \chi(1)^{\epsilon}$ for every χ .

The strategy extends the bounded rank case. Let $w = w_1w_2$ as before. We show that

$$
C_G(w_i(g_1,\ldots,g_d))| \leq q^{cr}
$$

almost surely, and conclude that

$$
|\chi(w_i(g_1,\ldots,g_d))| \leq \chi(1)^{\epsilon}
$$

for all χ almost surely.

We fix $0 < \epsilon < 1/3$ and proceed in a similar manner, using the fact that $\zeta_G(1-3\epsilon) \to 1$ if $r \gg 0$.