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We care about decomposition numbers in Modular Representation Theory (MRT). Many interesting categories in

MRT can be packaged into a categorical representation of ŝle (e.g., e = p, or qe = 1) categorifying a Fock space.
For the novice:
Ordinary representation of sl2: We have weight spaces V [n] with raising and lowering operators.

V [−2]
e ++

V [0]
f
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e ++
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kk

A categorical representation consists of categories and functors,

V[−2]
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F
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V[2]

F

kk

Naively we would simply enforce that they satisfy the Lie algebraic relations.
There are two families of morphisms that Chuang-Rouquier ’06 specify, one from specific natural transformation

NHK → End(Ek), and the other from bi-adjunctions between E and F .
You might be familiar with the famous proof:

Db(V[−k]) ∼= Db(V[k])

They also proved rigidity: (In reps of sl2, V ⊕mλ
∼= Vλ � V [λ])

If V,W are cat sl2 reps, with
[V] ∼= [W] ∼= V ⊕mk

isotypic, and
V[k] ∼=W[k]

then V ∼=W .
This suggests an approach to MRT:

• Prove rigidity for categorifications of Fock space,

• Find another Fock space categorification where we can compute!

There are several problems with this outline of an approach.
Problem 1: There is a category where we can compute: The Hecke category, aka singular Soergel bimodules. The

Grothendieck group is NOT a Fock space. So let’s explore how they might be connected, to get a sense for what we
need to do to relate them.
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1 Weird Representation Theory
Pick e ≥ 2. Let P be the set of partitions {λ1 ≥ λ2 ≥ . . . ≥ 0} (non-increasing sequences of non-negative integers
which eventually become zero).

Let F = SpanP .
For i ∈ Z/eZ, and define

fi(λ) =
∑

µ=λ+ i

µ,

ei(λ) =
∑

µ=λ− i

µ,

where boxes are labeled by their contents modulo e.

Example For i = 1, e = 3,

Span{λ± i ± i ± i }

is an 8-dimensional subrepresentation of F for 〈e1, f1〉 ∼= sl2 isomorphic to V ⊗3
1 , where V1 is the standard 2-

dimensional representation.

Also fix m ≥ 1. Let VPm be the set of virtual partitions with m rows, {λ1 ≥ λ2 ≥ · · · ≥ λm} (not necessarily
≥ 0).

Example For m = 4,

We define V Pm = SpanVPm.
For example, V P1

∼= CZ = Ce[t, t−1] standard “level 0” representation of ŝle � sle[t, t
−1].

V Pm = Λm(V P1).

F = Λ
∞
2 (V P1) is the “level 1” representation, and the V Pm are level 0. Level 1 has a highest weight vector, but

level 0 does not.
Let F≤n be the subspace spanned by P≤n. There are vector space maps

F≤m−1 ↪→ F≤m
ψ
↪→ V Pm
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and we care about the composition ϕ.
Here Im(ϕ) is the subspace of V Pm where λm = 0.
We have ϕ does intertwine in a restricted sense ψfi = fiϕ, with fi(F≤m−1) ⊂ F≤m.
Both subspaces F≤m−1, Im(ϕ) are preserved by ei for i 6= −m− 1.

e−m−1 removes an extra box from V Pm.
So ϕ is a restricted, truncated intertwiner, by which we mean we truncate the action of e−m−1 to ignore the

“frozen box”.
Accept for the moment that we can do this. Moral: A piece of F and a piece of V Pm are isomorphic if you’re a

little weird.
Recall that, for sl2 = 〈e−m−1, f−m−1〉 (henceforth e = e−m−1, f = f−m−1), F/V Pm splits into⊕

V ⊗k1 .

V1 = v
e ))

v∅
f

jj

Think of the frozen box as the last tensor factor.
Let M be any sl2 representation. Consider M ⊗ V1.

ϕ : M →M ⊗ V1,

m 7→ m⊗ v .

f(m⊗ v ) = f(m)⊗ v +�����m⊗ f(v )

e(m⊗ v ) = e(m)⊗ v +m⊗ v∅

Let e on M ⊗ v be e(m⊗ v ) = e(m)⊗ v ; e makes φ an intertwiner.
To describe e without reference to ϕ,M on M , there exists a pairing (, ) for which e, f are biadjoint. So e is

adjoint to f on M ⊗ v with respect to (, ) induced from M .
Let’s return to the approach to studying MRT outlined above.

1.1 Filtrations
Chuang-Rouquier proved filteredness: If

[V] = V =
⊕

V ⊕µn
n ,

then V has a filtration by Serre subcategories V≥n such that

[V≥n+1/V≥n] ∼= V ⊕µn
n .

Example
V = V ⊗2

1

is given by
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which is isomorphic through a change of basis to the direct sum of a 1-dimensional and a 3-dimensional irreducible,

But you can’t do this change of basis on a categorical level. Instead there is a filtration in which the 3-dimensional
irreducible occurs as a Serre subcategory.

In particular the weight space V[0] is filtered in an interesting way.

The Big idea: Rigidity fails for non-isotypic, so to try to rigidify, we need to understand the filtration. In the
examples, the filtration V≥n[k] is a highest weight categorical filtration!!

Example Categorification of Schur-Weyl duality

V[0] ∼= O0.

Ben Webster built a categorification of tensor products of irreducible representations whose highest weight struc-
ture were naturally present.

Losev, Losev-Webster proved rigidity of categorifications of V ⊗n1 in the presence of compatible highest weight
structures.

Part I of paper: Construct a categorical representation of ŝle on “SSBim” for ĝlm, a “categorified affine Schur-
Weyl duality”.

Showed that this is a “cellular category” from which we can obtain highest weight structures.
Massage a lot (construct a parabolic version, take Ringel duality, ...) to get a categorification of V Pm. The

massaging is made technically possible because of the highest weight structures.
Part II of paper: V Pm vs Fock space.
Losev’s categorical truncation: Given a categorification V of M ⊗ V1, with compatible highest weight structures,

then M ⊗ v is categorified by a highest weight subcategoryW .
Its hom form descends to (, ) on M ⊗ v .
So F on V restricts to the desired F onW . Let E be the adjoint.

Theorem 1.1 This works: (F,E) gives a categorical sl2 representation onW .

Moral: Highest weight structures do the work!
Eventually, with some very technical details, we prove:

• Rigidity for categorifications of pieces of F with compatible highest weight structures.

• Highest weight subquotients of “SSBim(glm)” and MRT Fock categorifications are equivalent.
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1.2 Quick Description of Singular Soergel Bimodules
There is an action on Zm by the affine Weyl group Waff ⊃ Sm, so s0(n1, . . . , nm) = (nm − e, . . . , n1 + e).

Λ = {n1 ≤ n2 ≤ · · · ≤ nm ≤ n1 + e}

is the fundamental domain.
Stab(n) is a proper parabolic subgroup of Waff .
Let R = C[x1, . . . , xm, y] acted on by Waff . Then

RStab(n) ⊂ R

is Frobenius.
For a Frobenius extension, induction and restriction are nice functors. Singular Soergel bimodules are obtained by

induction-restriction-induction-restriction... between the stabilizers.
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