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Problem

Determine the dimensions of the simple modules of
the symmetric groups Sn over a field of
characteristic p.

These can be computed from the decomposition
numbers

[Specht : simple].
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Blocks

A block of FpSn has on the order of pw simple
modules, for some weight w ≥ 0.

Consider the set of blocks of all FpSn, n ≥ 0 of a
fixed weight w ≥ 0.

I There are infinitely many such blocks, but only
finitely many Morita equivalence classes.

I Any two such blocks are derived equivalent.

I If w < p (⇐⇒ abelian defect) then there is
one such block Morita equivalent to the
principal block of Sp oSw.
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Weight 1

extended dual

Brauer tree

(p = 7)

· · · · · ·

[Specht : simple] =

{
1 if ∈
0 otherwise

For every block B of weight 1, we have B ∼= eΓe,
where Γ is the Brauer tree algebra of an infinite line.
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Weight 2: Rhombal algebras

The tiling TB associated to a block B

extends to a
tiling T̂B of the whole plane, and eBe ∼= eΓ(T̂ )e,

where Γ(T̂B) is one of Peach’s rhombal algebras.
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Cubist algebras

For weight > 2, Will Turner conjectured Peach’s
rhombal algebras should be replaced by his own
Cubist algebras.

Fix R ⊇ Λ→ k. Consider a tiling

T : Rd =
⋃
γ

Pγ,

by parallelotopes Pγ, each generated by a basis of
Λd, and in which any two Pγ’s are disjoint or
intersect in a common face.
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Cubist algebras

Let Q be the quiver obtained from T by replacing
edges by pairs of arrows.

Define an algebra VT to be kQ modulo relations

I αβ + γδ = 0, if αβ and γδ are alternate paths
across a parallelogram

I λ1α1α
′
1 + · · ·+ λsαsα

′
s = 0 if

λ1v(α1) + · · ·+ λsv(αs) = 0 in Λd.

Turner: UT := V !
T is a locally finite-dimensional

algebra with many good homological properties.
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q-decomposition numbers

Fix e ≥ 2. Leclerc and Thibon associate a
q-decomposition number dλµ(q) to any pair of
partitions λ and µ.

When e = p and µ is p-regular, we have

dλµ(1) ≤ [Sλ : Dµ],

with equality known to hold in many cases when λ
and µ have p-weight w < p.
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e-divisible rimhooks
Let Hooke(λ) be the set of rimhooks H ⊆ [λ] of
length divisible by e.

Its cardinality is the e-weight
of λ.

Given H ∈ Hooke(λ), define a partition λH as
follows: Unwrap H from [λ] by successively
unwrapping e-rimhooks

H1, . . . , H last.

Then wrap on
H̃ last, . . . , H̃1,

where H̃ i is minimally strictly north-east of H i, to
obtain [λH ].
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λ = (52, 4, 23, 12) λH = (6, 52, 23)
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Theorem (CMT)

Let λ be generic (to be defined later). Then for all
H ∈ Hooke(λ), λH is well-defined, and

dλ,λH(q) = q.

Denote by Bgen the subset of generic partitions in a
block B of e-weight w. Then

|Bgen|
|B|

→ 1 as e→∞ (w fixed).
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There exists a map v : Bgen → Zw such that for all
λ, µ ∈ Bgen, we have dλµ(q) = q|Ω| if
v(µ) = v(λ) +

∑
H∈Ω(v(λH)− v(λ)) for some

Ω ⊆ Hooke(λ),

and dλµ(q) = 0 otherwise.

Moreover the solid w-parallelotopes

Π(λ) = {v(λ)+
∑

H∈Hooke(λ)

aH(v(λH)−v(λ)) : aH ∈ [0, 1]} ⊂ Rw

are the w-cells of a connected, simply connected
polytopal complex in Rw.
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Suppose H last is unique for all H ∈ Hooke(λ)

(⇐⇒ all components of the e-quotient of λ are
hooks). Write Hooke(λ) = {H1, . . . , Hw} so that
H last

1 , . . . , H last
w are ordered south-west to

north-east.

Define vi to be the width of H last
i , or one less than

the width if the NE-most box of H last
i is the last

box in its row of [λ].

Then λ is generic if vi+1 − vi ≥ 7 for all i, and
vw ≤ e− 2.

And v : Bgen → Zw is given by v(H) = (v1, . . . , vw).
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Example: e = 3, w = 2, empty 3-core.
None of the partitions in this block are generic, but
we can still check...

Put eλi = v(λHi
)− v(λ); even

when λHi
is not defined, eλi can be.

(6) (5, 1) (4, 12) (32) (3, 2, 1)

λ

v(λ) eλ1 eλ2 (3, 2) (2, 2) (1, 2) (2, 1) (1, 1)

(6)

(3, 2) e1 e2 − e1 1

(5, 1)

(2, 2) e1 e2 − e1 q 1

(4, 12)

(1, 2) e1 e2 − e1 q 1

(32)

(2, 1) e1 e2

(3, 2, 1)

(1, 1) e1 e2

(3, 13)

(0, 2) e1 − e2 e2 q2 q

(23)

(1, 0) e1 e2

(2, 14)

(0, 1) e1 − e2 e2

(16)

(0, 0) e1 − e2 e2
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None of the partitions in this block are generic, but
we can still check... Put eλi = v(λHi

)− v(λ); even
when λHi

is not defined, eλi can be.

(6) (5, 1) (4, 12) (32) (3, 2, 1)

λ v(λ) eλ1 eλ2

(3, 2) (2, 2) (1, 2) (2, 1) (1, 1)

(6) (3, 2) e1 e2 − e1

1

(5, 1) (2, 2) e1 e2 − e1

q 1

(4, 12) (1, 2) e1 e2 − e1

q 1

(32) (2, 1) e1 e2
(3, 2, 1) (1, 1) e1 e2
(3, 13) (0, 2) e1 − e2 e2

q2 q

(23) (1, 0) e1 e2
(2, 14) (0, 1) e1 − e2 e2
(16) (0, 0) e1 − e2 e2



Example: e = 3, w = 2, empty 3-core.
None of the partitions in this block are generic, but
we can still check... Put eλi = v(λHi

)− v(λ); even
when λHi

is not defined, eλi can be.

(6) (5, 1) (4, 12) (32) (3, 2, 1)
λ v(λ) eλ1 eλ2 (3, 2) (2, 2) (1, 2) (2, 1) (1, 1)

(6) (3, 2) e1 e2 − e1

1

(5, 1) (2, 2) e1 e2 − e1

q 1

(4, 12) (1, 2) e1 e2 − e1

q 1

(32) (2, 1) e1 e2
(3, 2, 1) (1, 1) e1 e2
(3, 13) (0, 2) e1 − e2 e2

q2 q

(23) (1, 0) e1 e2
(2, 14) (0, 1) e1 − e2 e2
(16) (0, 0) e1 − e2 e2



Example: e = 3, w = 2, empty 3-core.
None of the partitions in this block are generic, but
we can still check... Put eλi = v(λHi

)− v(λ); even
when λHi

is not defined, eλi can be.

q-decomposition matrix (3-regular µ), predicted:

(6) (5, 1) (4, 12) (32) (3, 2, 1)
λ v(λ) eλ1 eλ2 (3, 2) (2, 2) (1, 2) (2, 1) (1, 1)

(6) (3, 2) e1 e2 − e1 1
(5, 1) (2, 2) e1 e2 − e1 q 1
(4, 12) (1, 2) e1 e2 − e1 q 1
(32) (2, 1) e1 e2 q2 q 1

(3, 2, 1) (1, 1) e1 e2 q2 q q 1
(3, 13) (0, 2) e1 − e2 e2 q2 q
(23) (1, 0) e1 e2 q2 q

(2, 14) (0, 1) e1 − e2 e2 q2

(16) (0, 0) e1 − e2 e2



Example: e = 3, w = 2, empty 3-core.
None of the partitions in this block are generic, but
we can still check... Put eλi = v(λHi

)− v(λ); even
when λHi

is not defined, eλi can be.

q-decomposition matrix (3-regular µ), actual:

(6) (5, 1) (4, 12) (32) (3, 2, 1)
λ v(λ) eλ1 eλ2 (3, 2) (2, 2) (1, 2) (2, 1) (1, 1)

(6) (3, 2) e1 e2 − e1 1
(5, 1) (2, 2) e1 e2 − e1 q 1
(4, 12) (1, 2) e1 e2 − e1 q 1

(32) (2, 1) e1 e2 ��@@q
2 q 1

(3, 2, 1) (1, 1) e1 e2 q q2 q q 1
(3, 13) (0, 2) e1 − e2 e2 q2 q

(23) (1, 0) e1 e2 q2 ��@@q
2 q

(2, 14) (0, 1) e1 − e2 e2 q q2

(16) (0, 0) e1 − e2 e2 q2


