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Today: Work in progress.

1 Background
Let G be a finite group, and denote by

Class(G)

the space of class functions on G over C (inner product space). This space has an orthonormal basis given by the set
of irreducible characters Irr(G) ⊂ Class(G). For any subgroup L ≤ G we have associated induction and restriction
maps

IndGL : Class(L)→ Class(G),

ResGL : Class(G)→ Class(L).

Problem: If ρ ∈ Irr(L) and χ ∈ Irr(G), what is the multiplicity 〈χ, IndGL (ρ)〉 of χ in IndGL (ρ)?

Example: If G = Sn is the symmetric group then the irreducible characters Irr(G) = {χλ | λ ` n} are parame-
terised by partitions of n. If L = Sa ×Sb is a Young subgroup, with a+ b = n, then we have the multiplicity

〈χλ, IndGL (χµ � χν)〉 = cλµν

is given by the Littlewood–Richardson coefficient cλµν . These coefficients are combinatorially computable by the
Littlewood–Richardson rule.

More generally, if G is a finite real reflection group and L is a reflection subgroup then one can determine the
multiplicities 〈χ, IndGL (ρ)〉 explicitly/combinatorially.

Finite Reductive Groups
We will consider the case where G is a finite reductive group. In particular, we have a connected reductive algebraic
group G and a Steinberg endomorphism F : G→ G such that G = GF . In this setting the usual induction/restriction
maps are not the right tools. However, in 1976 Deligne–Lusztig defined induction/restriction maps

RG
L⊆P : Class(L)→ Class(G),

∗RG
L⊆P : Class(G)→ Class(L),

for any parabolic subgroup P 6 G with F -stable Levi complement L 6 P. We note that these maps send irreducible
characters to virtual characters, i.e., Z-linear combinations of irreducible characters.

Problem: If ρ ∈ Irr(L) and χ ∈ Irr(G), what is the multiplicity 〈χ,RG
L⊆P(ρ)〉 ∈ Z of χ in RG

L⊆P(ρ)?

1



Example: If P is F -stable then
RG

L⊆P = IndGP InfPL︸ ︷︷ ︸
RGL

is simply Harish-Chandra induction (or parabolic induction).

History:

• (Howlett–Lehrer ’84): Comparison Theorem for Harish-Chandra induction.

• Lusztig (’85/’88): Complete solution when L is a torus.

• Asai (’84/’85): case where ρ is unipotent.

• Shoji (’85/’87): generalization of Asai to arbitrary characters when Z(G) is connected.

Why are we interested in this problem?

Conjecture 1.1 (Lusztig) There is a basis of Class(G) given by characteristic functions of character sheaves. The
conjecture specifies the change of basis matrix from this basis to the basis Irr(G), of irreducible characters, up to
scalars.

The way to think about Lusztig’s conjecture is inductive through Levi subgroups. The problem 〈χ,RG
L⊆P(ρ)〉

becomes quite relevant here.

2 Harish-Chandra Theory
We say χ ∈ Irr(G) is cuspidal if

∗RGL (χ) = 0 for all L < G.

If L 6 G is a Levi subgroup and δ ∈ Irr(L) is a cuspidal character then we consider the Harish-Chandra series
E(G, (L, δ)) = {χ ∈ Irr(G) | 〈χ,RGL (δ)〉 6= 0}. A classic result of Harish-Chandra shows that we obtain a partition

Irr(G) =
⊔

(L,δ)/∼

E(G, (L, δ))

of the set of irreducible characters. This yields a corresponding direct sum decomposition of the space of class
functions

Class(G) =
⊕

Class(G, (L, δ)).

Theorem 2.1 (Howlett–Lehrer, Lusztig, Geck) Let WG(L, δ) be the stabilizer of δ in NG(L)/L then there is an
isometry

RGL (δ | −) : Class(WG(L, δ))→ Class(G, (L, δ))

such that RGL (δ | ρ) ∈ E(G, (L, δ)) for any ρ ∈ Irr(WG(L, δ)) and

RGL (δ) =
∑

ρ∈Irr(WG(L,δ))

ρ(1)RGL (δ | ρ).

Theorem 2.2 (Comparison Theorem, due to Howlett-Lehrer)
If L ≤M then we obtain a commutative diagram

Class(G, (L, δ)) Class(WG(L, δ))
RGL (δ|−)oo

Class(M, (L, δ))

RGM

OO

Class(WM (L, δ))
RGM (δ|−)
oo

Ind
WG(L,δ)

WM (L,δ)

OO
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3 Unipotent Characters
Recall that Lusztig has defined the following set of irreducible characters

E(G, 1) = {χ ∈ Irr(G) | 〈χ,RG
T (1)〉 6= 0 for some F -stable maximal torus T ≤ G}

whose elements are called unipotent characters.
Now assume we fix T0 ≤ B0 ≤ G an F -stable maximal torus and Borel subgroup of G then we can define a map

WG := NG(T0)/T0 3 w 7→ Tw ≤ G an F -stable maximal torus.

As T0 is F -stable the endomorphism F induces an automorphism of WG. We set

W̃G :=WG o 〈F 〉 ⊇WGF,

whereWGF denotes the unique coset ofWG�W̃G containing F . The groupWG acts on the cosetWGF by conjugation
and we denote by Class(WGF ) the C-valued functions which are invariant under this action. This is a straightforward
generalisation of the usual notion of class functions.

The irreducible characters of the coset are defined to be the elements of the following set

Irr(WGF ) = {ResW̃G
WGF

(χ̃) | χ̃ ∈ Irr(W̃G) and ResW̃G
WG

(χ̃) ∈ Irr(WG)} ⊆ Class(WGF}.

Note that, in general, this set is not a basis of Class(WGF ) as the elements are not linearly independent. With this we
can define a map

RG
T0
(1 | −) : Class(WGF )→ Class(G, 1) = CE(G, 1)

by setting

RG
T0
(1 | f) = 1

|WG|
∑
w∈WG

f(wF )RG
Tw(1).

To see why this construction has nice properties we need the following

Mackey Formula: If L,M 6 G are F -stable Levi subgroups then

∗RG
L ◦RG

M =
∑
g

RL
L∩gM ◦∗ R

gM
L∩gM ◦ (ad g).

Just as in the usual Mackey formula the sum is taken over double coset representatives of L\G/M . However, one only
considers double cosets which ensure that L ∩ gM is the Levi complement of a parabolic subgroup of G.

Theorem 3.1 (Deligne, Deligne–Lusztig, Bonnafé, Bonnafé–Michel, Taylor) IfZ(G) is connected then the Mackey
formula holds unless G has a composition factor E8(2).

The Mackey formula has several important consequences:

• The mapRG
T0
(1 | −) : Class(WGF )→ Class(G, 1) is an isometry onto its image.

• Just as in the case of tori we can define a map

WG(L) = NG(L)/L 3 w 7→ Lw ≤ G an F -stable Levi subgroup.

Up to conjugacy we can assume T0 ≤ L and T0 ≤ Lw. We then have the following identity relating Deligne–
Lusztig induction and the mapRG

T0
(1 | −)

RG
Lw ◦ R

Lw
T0

(1 | −) = RG
T0
(1 | −) ◦ IndWGF

WLwF
.
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Example: Consider the case where G = GLn is the general linear group then WG = Sn. If f ∈ Irr(WGF ) is
an irreducible character of the coset then ±RG

T0
(1 | f) ∈ Irr(G) is irreducible. Moreover, in this case, we have

RG
T0
(1 | −) defines an isomorphism of Class(WGF ) onto Class(G, 1).

Let us further assume that F acts as the identity on WG so that G = GLn(q) for some prime power q. In this case
we have IndWGF

WLwF
= IndWG

WLw
is simply induction from the coset WLw ⊆ WG. Coset induction has an adjoint given

by coset restriction. If WL = Sa and w = (a+ 1, . . . , n) is an (n− a)-cycle then we have

ResWG
WLw

= ResSnSa(a+1,...,n)

is given by the Murnaghan–Nakayama formula.

Theorem 3.2 (Lusztig ’85) If f ∈ Irr(WGF ) is irreducible then RG
T0
(1 | f) is an explicit almost character (defined

by the Fourier transform).

Now, we say f ∈ Class(G) is absolutely cuspidal if ∗RG
L (f) = 0 for all L < G. We can generalise the

construction above
RG

T0
(1 | −)  RG

L (f | −)

where f ∈ Class(L) is an absolutely cuspidal almost character.

Goal: Show thatRG
L (f | −) maps irreducible characters to almost characters.

To achieve this we follow Asai’s approach: use Harish-Chandra information, Lusztig’s result, integrality, and a lot
of combinatorics.
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