Fourier matrices for unipotent characters

Lecture by Olivier Dudas Notes by Dustan Levenstein

Joint with Broué-Malle-Michel (1993) and Bonnafé-Rouquier.

We wish to understand Fourier matrices for finite reductive groups. Two interesting bases for class functions on $G(\mathbb{F}_q)$:

- (algebraic) characters of irreducible representations,
- (geometric) character functions of character sheaves.

The change of basis matrix is the Fourier matrix.

1 Drinfeld double of a finite group

Let Γ be an abstract finite group. Consider

$$\mathbb{C}^{\Gamma} = \{ \text{functions } \Gamma \to \mathbb{C} \}$$

basis by Dirac $\delta_x, x \in \Gamma$. This vector space has an action of Γ , so we can define

$$D_{\Gamma} := \mathbb{C}^{\Gamma} \rtimes \Gamma,$$

an algebra of dimension $|\Gamma|^2$.

Fact: There is a natural action of $SL_2(\mathbb{Z})$ on $Z(D_{\Gamma})$ ($CF(D_{\Gamma})$). If $x, y \in \Gamma$ with xy = yx,

$$[x:y] := \sum_{z \in \Gamma} z \left(\delta_x \cdot y \right) = \sum_{z \in \Gamma} \left(\delta_{zxz^{-1}} \cdot zyz^{-1} \right).$$

Then $\{[x:y]\}_{x,y\in\Gamma}$ defines a basis of $Z(D_{\Gamma})$. The action of $SL_2(\mathbb{Z})$ on $Z(D_{\Gamma})$ is induced by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot [x:y] := [x^a y^b : x^c y^d].$$

Example

$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} [x:y] = [x:xy] = \underbrace{\left(\sum_{r \in \Gamma} \delta_r \cdot r\right)}_{\text{Drinfeld element}} [x:y].$$

Another basis is given by Irr D_{Γ} :

$$D_{\Gamma}\operatorname{-mod} \Leftrightarrow \bigoplus_{x \in \Gamma/\sim} C_{\Gamma}(x)\operatorname{-mod},$$
$$X \rightsquigarrow X = \bigoplus_{x \in \Gamma} \delta_x X.$$
$$\operatorname{Irr} D_{\Gamma} \leftrightarrow \{ [x : \chi] \}_{\substack{x \in \Gamma \\ \chi \in \operatorname{Irr} C_{\Gamma}(x)}} \overset{x \in \Gamma}{(x)}$$

Example

$$\begin{pmatrix} 1 & 0\\ 1 & 1 \end{pmatrix} [x:\chi] = \left(\sum_{r\in\Gamma} \delta_r \cdot r\right) [x:\chi] = \omega_{\chi}(x)[x:\chi] = \frac{\chi(x)}{\chi(1)}[x:\chi].$$

Theorem 1.1 (Lusztig, Shoji) There exists

• a partition

$$\operatorname{Uch}(G(\mathbb{F}_q)) = \bigsqcup_{\mathcal{F} \text{ families}} \operatorname{Uch}(\mathcal{F}),$$

- a finite group $\Gamma_{\mathcal{F}}$ attached to each family,
- *a bijection*

$$\operatorname{Uch}(\mathcal{F}) \stackrel{1:1}{\leftrightarrow} \operatorname{Irr} D_{\Gamma_{\mathcal{F}}},$$

such that

(1)

$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \in SL_2(\mathbb{Z})$$

maps unipotent characters in \mathcal{F} to character functions of character sheaves of \mathcal{F} ,

(2)

(1)	0)
(1	1)

acts on $\rho_{[x:\chi]}$ by $\omega_{\chi}(x)$ which is the eigenvalue of the Frobenius on $\rho_{[x:\chi]}$.

Example

$\underline{E}_{\mathbf{x}}: G(\mathbf{F}_{\mathbf{x}})$	\overline{q}) = $\overline{G}_2(q)$ $\overline{\Pi}_F = \overline{G}_3$
Uch = { 1	$\frac{1}{3} \cup \left\{ \frac{1}{3} + \frac{1}{3} \cup \left\{ \frac{1}{3} + \frac{1}{3} $
$\begin{array}{c c} \varphi_{i,s'} & [1:ref] \\ G_{[1]} & [1:\epsilon] \end{array}$	
$G_{z}[1] [1:\varepsilon] \varphi_{z,z} [(\alpha):trv] G_{z,z} [(\alpha):trv] $	
$\begin{array}{c} G_{\epsilon}[-1] \begin{bmatrix} (12) : \epsilon \end{bmatrix} \\ \Phi_{0,5}'' \begin{bmatrix} (12) : t_{10} \end{bmatrix} \end{array}$	
$ \begin{array}{c} G_{\epsilon}[\vartheta] \\ G_{\epsilon}[\vartheta] \\ G_{\epsilon}[\vartheta] \\ \left[(25\rangle : \theta^{\epsilon} \right] \end{array} $	1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -

2 Cohomology of Deligne-Lusztig

Let G be a connected reductive group/ \mathbb{F}_q , with Frobenius $F: G \to G$, $G(\mathbb{F}_q) = G^F$, W the Weyl group, and assume that F acts trivially.

To $x \in W$ we associate X(x) an algebraic variety with an action of $G(\mathbb{F}_q)$.

Then we have the associated cohomology $H^{\bullet}(X(x))$ which are $\overline{\mathbb{Q}}_{\ell}$ vector spaces with a linear action of $G(\mathbb{F}_q)$. There is a map

$$H^i(X(x)) \xrightarrow{T_y} H^i(X(yxy^{-1}))$$

when we consider $x, y \in B_W$, the associated braid group to W (this map is not well-defined when we take $x, y \in W$), and an associated linear action of $C_{B_W}(x)$.

Example

$$X(1) = G(\mathbb{F}_q) / B(\mathbb{F}_q),$$

where $B(\mathbb{F}_q)$ is the Borel,

$$H^{\bullet}(X(1)) = \overline{\mathbb{Q}}_{\ell}[G(\mathbb{F}_q)/B(\mathbb{F}_q)],$$

which has an associated action of the Hecke algebra $\mathcal{H}_q(W)$ of W, (quadratic relation $(T_s - q)(T_s + 1) = 0$).

$$\mathbb{Z}C_{B_W}(1) \longrightarrow \mathcal{H}_q(W)$$

$$\|$$

$$\mathbb{Z}B_W$$

 T_x acts as F (Frobenius) on $H^{\bullet}(X(x))$.

$$\bigoplus_{x \in B_W} H^{\bullet}(X(x))$$

$$\sum_{y \in B_W} \delta_y T_y \text{ acts as the Frobenius.}$$

Recall that the Fourier transform converts the Unipotent characters into unipotent character sheaves.

Unipotent char
$$\leftarrow \xrightarrow{\text{Fourier}}$$
Unipotent char sheaves
 \uparrow \uparrow \uparrow \uparrow
principal series almost characters
 \uparrow \uparrow \uparrow
Irr W Irr W

$$\rho_{\chi} \text{ for } \chi \in \operatorname{Irr} W \qquad \qquad R_{\chi}, \chi \in \operatorname{Irr} W$$

$$\operatorname{Tr}(gT_x \mid H^{\bullet}(X(1)))$$
 $\operatorname{Tr}(gT_1 \mid H^{\bullet}(X(x)))$

We have

$$\overline{\mathbb{Q}}_{\ell}[G(\mathbb{F}_q)/B(\mathbb{F}_q)] = \bigoplus_{\chi \in \operatorname{Irr} W} \rho_{\chi} \otimes \chi_q.$$

Consider the weight filtration of

$$H^{\bullet}(X(x))$$
$$H^{i}_{c}(X(x)) = \bigoplus_{j \in \frac{1}{2}\mathbb{Z}} H^{i,j}_{c}(X(x)).$$

Here $C_{B_W}(x)$ acts on the LHS, and F acts with eigenvalues λq^j for $j \in \frac{1}{2}\mathbb{Z}$, $|\lambda| = 1$. Define, for every $x, y \in B_W$ with xy = yx,

$$H(x:y)_{t,q} = g \mapsto \sum_{i,j} (-1)^i \operatorname{Tr} \left(gT_x \mid H_c^{i,j}(X(y)) \right) t^j \tag{1}$$

for $g \in G(\mathbb{F}_q)$. We view this as an element of $\overline{\mathbb{Q}}_{\ell}[t^{\pm 1}, q^{\pm 1}]$ Uch W. We use

$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}^{-1}$$

to define the action of this matrix:

Lusztig says the eigenvalues of F on unipotent characters is generic.

$$Fr: \operatorname{Uch} W \to \overline{\mathbb{Q}}_{\ell} \operatorname{Uch} W$$

$$\rho \mapsto \omega_{\rho} \rho.$$

Using equation1 we get

$$Fr (H(x, y))_{tq,t} = H(xy : y)_{t,q}.$$

$$Sh \cdot H(x : y)_{t,qt} = H(x : xy)_{t,q}.$$

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

$$Fo = Fr^{-1}ShFr^{-1}$$

$$Fo(H(x,y))_{q^{-1},t} = H(y^{-1},x)_{t,q}.$$