On equivariant cohomology of Calogero-Moser spaces

Lecture by Peng Shan Notes by Dustan Levenstein

Joint with Cédric Bonnafé.

1 Calegero Moser Spaces

Let W be a finite complex reflection group, with reflection representation V. Let S be the generating set of pseudo-reflections.

Let

$$c: S \to \mathbb{C}$$

be a W-invariant function.

The rational Cherednik Algebra at t = 0 is

$$H_c := H_c(W, V) := T(V \oplus V^*) \rtimes W / \left\langle \begin{matrix} 0 = [x, x'] = [y, y'] \text{ for } x, x' \in V^*, y, y' \in V \\ [y, x] = \sum_{s \in S} c_s \frac{\langle \alpha_s^{\vee}, x \rangle \langle y, \alpha_s \rangle}{\langle \alpha_s^{\vee}, \alpha_s \rangle} \cdot s \end{matrix} \right\rangle$$

where $\langle -, - \rangle : V \times V^* \to \mathbb{C}$ is the standard pairing and $\alpha_s^{\vee} \in \text{Im}(s-1) \subset V, \alpha_s \in \text{Im}(s-1) \subset V^*$. There is an isomorphism of vector spaces

$$H_c \simeq \mathbb{C}[V] \otimes \mathbb{C}W \otimes \mathbb{C}[V^*].$$

Let Z_c be the center of H_c . Basic facts:

1) Z_c is an integrally closed integral domain.

2)

$$\begin{aligned} Z_c &\xrightarrow{\sim} eH_c e, \\ z &\mapsto z e, \end{aligned}$$

where

$$e = \frac{1}{|W|} \sum_{w \in W} w \in \mathbb{C}W.$$

3)

$$Z_c \supset \mathbb{C}[V]^W \otimes \mathbb{C}[V^*]^W =: P,$$

and Z_c is free over P of rank |W|.

Example If c = 0 then $Z_0 = \mathbb{C}[V \times V^*]^W$.

Definition The Calegero-Moser space is

$$X_c := X_c(W, V) := \operatorname{Spec} Z_c$$

a normal algebraic variety.

The map $\gamma: X_c \to V/W \times V^*/W$ is finite and flat.

There is a grading on H_c , $\deg(x) = 1$, $\deg(y) = -1$, and $\deg(w) = 0$, which induces a \mathbb{C}^{\times} -action on X_c . There is an action of \mathbb{C}^{\times} on $V/W \times V^*/W$ given by t acting by (t^{-1}, t) . The map $\underline{\gamma}$ is \mathbb{C}^{\times} -equivariant, and $X_c^{\mathbb{C}^{\times}} = \underline{\gamma}^{-1}(0)$.

2 Representations of restricted rational Cherednik algebra

2.1

Let \mathfrak{m}_P be the maximal ideal in P corresponding to (0,0).

$$\overline{H}_c := H_c / \mathfrak{m}_p H_c \cong \mathbb{C}[V]^{\operatorname{Co} W} \otimes \mathbb{C} W \otimes \mathbb{C}[V^*]^{\operatorname{Co} W}$$

(Here $\operatorname{Co} W$ denotes coinvariants of W.)

For $\lambda \in \operatorname{Irr}(W)$, $\Delta_c(\lambda) := \operatorname{Ind}_{\mathbb{C}W \ltimes \mathbb{C}[V^*]^{C_o W}}^{\overline{H}_c}(\lambda)$ has unique simple quotient $L_c(\lambda)$. Associated to λ we have $\chi_{\lambda} : Z_c \to \mathbb{C}$ the central character of $L(\lambda)$, this yields a map

$$z: \operatorname{Irr}(W) \to \underline{\gamma}^{-1}(0),$$
$$\lambda \mapsto \ker \chi_{\lambda}$$

surjective with fiber

 $\{\lambda \mid L(\lambda) \text{ same block}\}\$

which we call the Calogero-Moser family.

Theorem 2.1 (Gordon, Bellamy-Schedler-Thiel)

$$X_c$$
 is smooth $\iff z$ is bijective.

2.2

We have a W-equivariant map

$$\Omega_c^H : H_c \to \mathbb{C},$$
$$pwq \mapsto p(0)wq(0),$$

using the triangular decomposition $H_c \simeq \mathbb{C}[V] \otimes \mathbb{C}W \otimes \mathbb{C}[V^*].$

The restriction $\Omega_c = \Omega_c^H |_{Z_c}$ yields an algebra homomorphism on top here:

Theorem 2.1 implies

X is smooth $\iff \Omega_c$ is surjective.

For $w \in W$, set $a(w) = \operatorname{codim}(V^w)$.

$$F^i \mathbb{C}W := \operatorname{Span}\{w \mid a(w) \le i\},\$$

so

$$F^0 \mathbb{C}W = \mathbb{C}1 \subset F^1 \mathbb{C}W = \mathbb{C}\langle 1, s \rangle_{s \in S} \subset \cdots$$

For $A \subset \mathbb{C}W$, we have $F^i A := A \cap F^i \mathbb{C}W$.

$$A \otimes \mathbb{C}[h] \supset \operatorname{Rees}(A) = \bigoplus_{i \ge 0} F^i A h^i$$

 $gr^{\bullet}(A) = \operatorname{Rees}^{\bullet}(A)|_{h=0}.$

Conjecture 2.2 (Bonnafé-Rouquier)

- a) $H^{2i+1}(X_c) = 0$ for all $i \ge 0$,
- b) $H^*_{\mathbb{C}^{\times}}(X_c) \cong \operatorname{Rees}(\operatorname{Im} \Omega_c)$ as $H^*_{\mathbb{C}^{\times}}(pt) = \mathbb{C}[h]$ -algebras,
- c) $H^*(X_c) \cong \operatorname{gr}^{\bullet}(\operatorname{Im} \Omega_c).$

Remark 1) If $c = 0, X_0 = V \times V^*/W$,

$$H^*(X_0) = H^0(X_0) = \mathbb{C} = \operatorname{Im} \Omega_0.$$

2) Assume a) and b) of the conjecture are true.

$$H^*_{\mathbb{C}^{\times}}(X_c) \otimes_{\mathbb{C}[h]} \mathbb{C}(h) \xrightarrow{\sim} H^*_{\mathbb{C}^{\times}}(X_c^{\mathbb{C}^{\times}}) \otimes_{\mathbb{C}[h]} \mathbb{C}(h) = \mathbb{C}(h)[\underline{\gamma}^{-1}(0)]$$
$$\cong \operatorname{Im}(\Omega_c) \otimes \mathbb{C}(h).$$

- 3) If X_c is smooth, then $\text{Im}(\Omega_c) = Z(\mathbb{C}W)$, and a), c) of conjecture have been proved by Etingof-Ginzburg.
- 4) If W is cyclic then the conjecture is true.

Theorem 2.3 (Bonnafé-Shan)

- 1) If X_c is smooth, then part b) holds.
- 2) Assume X_0 has a symplectic resolution

 $\mathcal{X} \xrightarrow{\pi} X_0.$

Then the \mathbb{C}^{\times} *-action lifts to* \mathcal{X} *.*

$$H^*_{\mathbb{C}^{\times}}(\mathcal{X}) \cong \operatorname{Rees}(Z(\mathbb{C}W)).$$

We describe the proof of 1).

3 Idea of proof

1) From Etingof and Ginzburg we already know $H^{\text{odd}}(X_c) = 0$, and X_c is equivariantly formal. Let

$$i: X_c^{\mathbb{C}^{\times}} \hookrightarrow X_c,$$
$$i^*: H_{\mathbb{C}^{\times}}^*(X_c \hookrightarrow H_{\mathbb{C}^{\times}}^*(X_c^{\mathbb{C}^{\times}}))$$

where

$$H^*_{\mathbb{C}^{\times}}(X_c^{\mathbb{C}^{\times}}) = \bigoplus_{\lambda \in \operatorname{Irr}(W)} \mathbb{C}[h] \cdot z(\lambda) = \mathbb{C}[h] \otimes Z(\mathbb{C}W)$$
$$z(\lambda) \mapsto e_{\lambda},$$

where e_{λ} is the central primitive idempotent in $\mathbb{Z}(\mathbb{C}W)$ corresponding to the irreducible representation λ .

Problem: want to show

$$\operatorname{Im}(i^*) = \operatorname{Rees}(Z(\mathbb{C}W)),$$

enough to show

$$\operatorname{Im}(i^*) \supseteq \operatorname{Rees}(Z(\mathbb{C}W)).$$

Recall

$$\operatorname{Rees}(Z(\mathbb{C}W)) = \bigoplus_{r \ge 0} F^r(Z(\mathbb{C}W))h^r.$$

Let

$$P^{r}(W) := \{ W' \subset W \text{ parabolic subgroup } | \operatorname{codim}(V^{W'}) = r \}.$$

$$\operatorname{Tr}: Z(\mathbb{C}W') \to Z(\mathbb{C}W)$$
$$z \mapsto \sum_{g \in W/W'} gzg^{-1}.$$
$$\mathcal{F}^r(Z(\mathbb{C}W)) = \sum_{W' \in \mathcal{P}^r(W)} \operatorname{Tr}(Z(\mathbb{C}W'))$$

Problem: For $\chi' \in Irr(W')$,

$$\operatorname{Tr}(e_{\chi'}^{W'})h^r \in \operatorname{Im}(i^*).$$

Consider

 $K_{\mathbb{C}^{\times}}(X_c) =$ Grothendieck group of \mathbb{Z} -graded projective Z_c -modules.

Here

$$K_{\mathbb{C}^{\times}}(X_c^{\mathbb{C}^{\times}}) = \bigoplus_{\lambda \in \operatorname{Irr}(W)} \mathbb{C}[q^{\pm 1}] z(\lambda)$$

and $i^*: K_{\mathbb{C}^{\times}}(X_c) \to K_{\mathbb{C}^{\times}}(X_c^{\mathbb{C}^{\times}})$ is given by

$$P \mapsto \bigoplus_{\lambda \in \operatorname{Irr}(W)} \operatorname{gdim}(P/\mathfrak{m}_{\lambda}).$$

For $E \in Irr(W)$, $P(E) = H_c \otimes_{\mathbb{C}W} E \in Proj(H_c)$. In the smooth case we have a Morita equivalence

 $Z_c\operatorname{-mod} \stackrel{\sim}{\leftarrow} H_c\operatorname{-mod}$

$$e(M) \longleftrightarrow M.$$

We have $eP(E) \in \operatorname{Proj}(Z_c)$. We can compute $Ch(eP(E)), Ch(eP(\operatorname{Ind}_{W'}^{W}(\Lambda^*(V^{W'})^{\perp} \otimes \chi')))$.