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Outline of Galois theory of periods

∫
∆
ω, ∆ and ω “algebraic”

(ω diff. form on an algebraic variety X defined

over some number field k, ∆ ⊂ X(R) defined

by algebraic inequations /k),

Transcendence of periods? Algebraic relations

between them (period relations)?

Leibniz (1691, letters to Huygens): specula-

tion about transcendence of π and some other

(1-dim) periods. Inquiry about “accidental”

cases when they are algebraic: “nothing hap-

pens without a reason”...

2



General conjectures:

Grothendieck (1966): any period relation is of

motivic origin.

X smooth /k, H∗(X(C),Q)⊗H∗dR(X)→ C

expressed by period matrix ΩX.

If X proper, Z alg. subvariety dim. r of Xm ,

ω ∈ H2r
dR(Xm) ⊂ HdR(X)⊗m ;

∫
Z ω ∈ (2πi)rk

conjecturally, period relations always come in

this way.
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Kontsevich (1998) (-Zagier): any period rela-

tion comes from the basic rules for
∫

:

linearity, product, algebraic change of variable∫
∆ f∗ω =

∫
f∗∆ ω, Stokes

∫
∆ dω =

∫
∂∆ ω.

When made precise, these two conjectures can

be proven to be equivalent.

Remark. Functional analog of periods: Q ;

C(t). Ayoub (2015) proved analogs of

Grothendieck’s and Kontsevich’s conjectures

in this case.
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Motives: categorification of the Grothendieck

ring of varieties K0(V ark).

; abelian ⊗-category MM(k).

(3 unconditional, compatible theories: A.

(pure case), Nori, Ayoub; cf. Bourbaki nov.

2015).

eg. X smooth ; 〈X〉⊗ ∼= RepQGX

GX ⊂ GL(H(X(C)),Q) motivic Galois group of

X.

〈X〉⊗
HB,HDR→ V ecQ (k = Q) ; ΠX period torsor

Period pairing ↔ canonical point in ΠX(C):

SpecC $X→ ΠX .
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Grothendieck’s period conjecture:

PCX: $X is a generic point.

Equivalently: ΠX is connected, and

TrDegQQ[ΩX] = dimGX.

If so, one can develop a bit of Galois theory of

periods: GX(Q) would act on Q[ΩX] ; Con-

jugates of periods...

Examples: X = P1 : GX(Q) = Q×,
Q[ΩX] = Q[2πi] (PCX: Lindemann),

X = CM elliptic curve by K: GX(Q) = K×,
Q[ΩX] = Q[ω1, η1] (PCX: Chudnovsky).
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What if k ⊂ C is no longer algebraic over Q?

generalized PCX: TrDegQ k[ΩX] ≥ dimGX

(A. 1997). In the case of 1-motives [Zn →
Gnm], this amounts to Schanuel’s conjecture:

if x1, . . . , xn ∈ C are Q-linearly independent,

TrDegQQ[x1, . . . , xn, e
x1, . . . , exn] ≥ n.
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Outline of the AO conjecture.

Geometry of Ag, the algebraic variety which

parametrizes principally polarized abelian vari-

eties of dimension g (e.g. A1 = j-line).

Special subvarieties of Ag: subvarieties which

parametrize PPAV with “extra symmetries”.

PPAV with maximal symmetry (complex mul-

tiplication) are parametrized by special points.

AO conjecture: special subvarieties of Ag are

characterized by the density of their special

points.
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Remarks. - Ag and its special subvarieties

share a common geometric nature: they are

Shimura varieties

g = 1 : C H
↓ ℘ ↓ j

E ∼= C/(Zω1 + Zω2) A1 ∼= H/SL2(Z)

- “extra symmetries” ? ... Prescribed en-

domorphisms on A, or more generally, pre-

scribed Hodge cycles on powers of A; looks

transcendental, but is an algebraic condition:

amounts to prescribe algebraic cycles on prod-

uct of powers of A and some compact abelian

pencils (A. 1996).

The AO conjecture is now a theorem (2015),

after two decades of collaborative efforts

putting together many different areas. Some

key contributors: A. Yafaev, E. Ullmo, B. Klin-

gler, J. Pila, J. Tsimerman...
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Connections between AO and PC.

1. Early circle of ideas which gave rise to

the AO conjecture.

G− fct

PC

AO

G-functions ↔ periods

Possible approach to PC (for abelian periods)?

Example. Eλ : y2 = x(x− 1)(x− λ),

ω1(λ) ∼ πF (λ), η1 ∼ πF ′(λ), F = F (1
2,

1
2,1;λ).

Diophantine theory of special values of G-

functions F, F ′ ; new proof of PC for CM

elliptic curves (A. (1996)).
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For λ singular modulus (ie special point),

F (λ)(F ′(λ) + αF (λ)) = β/π, α, β ∈ Q̄. One

cannot eliminate π... other solutions of the

HGE are useless (log singularity at 0). But

for AV of dim. g > 1 instead parametrized

by a curve in Ag (instead of λ-line), one may

get enough G-functions and relations between

their special values.

Existence of lots of special points on the curve

would allow to apply G-function theory effi-

ciently. But analogy with Manin-Mumford ren-

ders the existence of ∞ly many special points

unlikely in the non-modular case!

This was one source of my formulation of AO

(1989) (Oort’s later but independent formula-

tion came from another source): AO bounds

the hope for an application of G-fct. theory

to PC; nevertheless, connections between AO

and PC turn out to be more intricate.
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2. Curves in products of modular curves

Case of C ⊂ A1 × A1 ⊂ A2 (A. (1993) - first,
and only, unconditional case of AO, until Pila
(2011)):

AOA1×A1: if C contains ∞ly many pairs of
singular moduli (j, j′), C is either a vertical or
horizontal line or some X0(N).

i) (jn, j′n) singular moduli on C, (Dn, D′n) (dis-
criminants of quadratic orders). Class field
theory ; for n >> 0, Q(

√
Dn) = Q(

√
D′n) and

D′n/Dn takes finitely many values.

ii) Linear forms in elliptic periods ; if ∞ly
many special points on C, a branch of C goes
to (∞,∞): if (jn = j(τn), j′n) → (∞, j′ =
j(τ ′)), then τ ′ = ω′1/ω

′
2 is well-approximated

by quadratic numbers τn; contradicts Masser’s
lower bound for |ω′1 − τn ω

′
2|.]

iii) analysis of Puiseux expansions.
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3. Hypergeometric values

a, b, c ∈ Q, R(c) > R(b) > 0, n = den(a, b, c),

F (a, b, c;λ) =
∑ (a)m(b)m

(c)mm! λ
m

=
∫ 1

0 xb−1(1−x)c−b−1(1−λx)−adx
B(b,c−b)

satisfies HG diff. equation, monodromy =

Schwarz triangle group ∆.

numerator = period of Jnewn,a,b,c,λ

yn = xn(b−1)(1− x)n(c−b−1)(1− λx)−na

denominator B(b, c− b) = period of simple CM

quotient Fb,c of Fermat jacobian.
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Question (J. Wolfart): for which (a, b, c) are

there ∞ly many λ ∈ Q̄ with F (a, b, c;λ) ∈ Q̄?

Answer (Wüstholz-Wolfart-Cohen-Edixhoven -

Yafaev): iff ∆ finite or arithmetic.

[“if” due to Wolfart. “Only if”: 3 steps:

i) Wüstholz (special case of PC): Q̄-linear rela-

tions between periods of abelian periods come

from endomorphisms

; (λ, F (a, b, c;λ) ∈ Q̄)⇒ Jnewn,a,b,c,λ ∼ Fb,c,

ii) for P1 \ {0,1,∞} φ→ Ag : λ 7→ Jnewn,a,b,c,λ,

Im(φ) special iff ∆ finite or arithmetic.

iii) AO ; Im(φ) special iff Jnewn,a,b,c,λ has CM for

∞ly many λ’s.]
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4. Bialgebraicity

Hg ⊂ H∨g (lagrangian grassmanian)

j ↓ τ = Ω1Ω−1
2 7→ j(τ)

Ag

Both H∨g and Ag are algebraic varieties/Q, but

j is transcendental.

Bialgebraic characterization of special subva-

rieties (Wüstholz-Cohen-Shiga-Wolfart-Ullmo-

Yafaev): S ⊂ Ag is special iff both S and a

branch of j−1(S) ⊂ H∨g are algebraic and de-

fined over Q̄.

CSW: case of dim 0: τ, j(τ) ∈ Q̄ ⇔ j(τ) is a

special point.
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Remark. H∨g and Ag are transcendentally re-

lated by j, but are also algebraically related by

the relative period torsor:

Πg
ρ→ H∨g

↓
Ag

Πg is a Sp2g-torsor on Ag, with coordinates

corresponding to

(
Ω1 N1
Ω2 N2

)
, and ρ is the

Sp2g-equivariant surjective map

(
Ω1 N1
Ω2 N2

)
7→

Ω1Ω−1
2 .
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5. Minimal special subvarieties

Given a PPAV A of dim. g, ie a point jA ∈ Ag,
there is a (unique) minimal special subvariety

SA containing jA.

Question (Wolfart): if A is defined over Q̄,

what is the dimension of SA?

Answer: PCA ⇒ dimSA = TrDeg.QQ(τ), for

any τ ∈ H such that j(τ) = jA).

via an analysis of (a reduction of) the relative

period torsor Πg. CSW is the case ‘0= 0” of

this equality.
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6. Other connections. One break-

through in the proof of AO was the intro-

duction of o-minimal methods (Pila-Zannier).

In such counting arguments, an exceptional

(semi-)algebraic set is left out. To handle it,

one needs some functional transcendance re-

sults, which are functional analogs of the gen-

eralized PC.

Another breakthrough was to obtain lower

bound for Galois orbits of special points from

an average version of Colmez’ conjecture

on Faltings heights of CM abelian varieties.

The connection (Tsimerman) uses a result of

Masser-Wüstholz in the framework of tran-

scendence of abelian logarithms.
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