
1. Elliptic multiple zeta values and periods by Nils Matthes

Multiple zeta values are real numbers defined by

ζ(k1, · · · , kn) =
∑

m1>m2>···>mn>0

1

mk1
1 · · ·mkn

n

where ki ≥ 1 and k1 ≥ 2.
The multiple polylogarithms are multivalued functions on P1 minus three points, and their

value at 1 are equal to multiple zeta values. The multiple zeta values occur as coefficients of
Drinfeld associators. The periods of mixed Tate motives over Z are multiple zeta values.

Goal. To generalize this picture to genus 1.

Motto. Multiple zeta values and elliptic multiple zeta values arise from parallel transport.

Example 1.1. The basic example is the number 2πi. Consider C×. Its fundamental group
π1(C×; 1) is isomorphic to the free abelian group Z · γ where γ denotes the unit circle
counterclockwise. Consider the trivial vector bundle C×C× → C× on C× with the connection
∇ given by

∇f := df − dz

z
where f is a section of the bundle and z is the coordinate on C×. The map

π1(C×; 1)→ C, γ 7→
∫
γ

dz

z
= 2πi · 1

induces an isomorphism

π1(C×; 1)⊗ C ∼−→ C.
It shows that 2πi comes from parallel transport on C× along the connection ∇.

π1(C×; 1) ' Z(1)

and 2πi is a period of Z(1).

Now we discuss multiple zeta values (MZVs).

Example 1.2. Take X := P1
C \ {0, 1,∞}. Then its fundamental group π1(X;x) is equal

to the free group Fr(γ0, γ1) generated by the loops γ0, γ1 around 0 and 1 respectively. Let
C〈〈x0, x1〉〉 denote the ring of power series in the non-commutative variables x0, x1 where
the multiplication is by concatenation of variables. Consider the trivial bundle

C〈〈x0, x1〉〉 ×X → X

with the Knizhnik–Zamolodchikov connection

∇KZf = df − ωKZf

where

ωKZ =
dz

z
x0 +

dz

z − 1
x1.

We get multiple zeta values via parallel transport along this connection.
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Consider the map

TKZ
x : Q[π1(X;x)]→ C〈〈x0, x1〉〉, γ 7→

∞∑
k=0

∫
γ

ωKZ · · ·ωKZ︸ ︷︷ ︸
k-times

where ∫
γ

ω1 · · ·ωn :=

∫
1≥t1≥···tn≥0

γ∗(ω1)(t1) · · · γ∗(ωn)(tn)

The map TKZ
x highly depends on x as the values of the iterated integrals vary a lot with the

choice of the base point x (unlike the C× case as in the previous example, where we would
get 2πi if we choose a different base point).

We have to use Deligne’s tangential base points (which means a tangent vector at one of
the punctures 0, 1,∞). Take

~10 =
∂

∂z
∈ T0P1

C, −~11 = − ∂

∂z
∈ T1P1

C.

The formalism of tangential base points gives a way of integrating from one tangent vector
to another (which involves some regularization procedure).

We get a morphism

TKZ
−~11,~10

: Q[π1(X;−~11,~10)]→ C〈〈x0, x1〉〉, γ 7→
∞∑
k=0

Reg

∫
γ

ωKZ · · ·ωKZ︸ ︷︷ ︸
k-times

.

Let dch ∈ π1(X;−~11,~10) denote the canonical path from 0 to 1. Evaluating the map
TKZ
−~11,~10

at dch we get the Drinfeld associator Φ(x0, x1).

TKZ
−~11,~10

(dch) = Φ(x0, x1)

The coefficient of xk1−10 x1 · · ·xkn−10 x1 (for k1 ≥ 2) in Φ(x0, x1) is (−1)nζ(k1, · · · , kn).

Example 1.3 (Elliptic multiple zeta values (eMZVs)). Consider the punctured elliptic curve

E×τ := (C/Z + Zτ) \ {0}
where τ is an element of the upper half-plane h. The fundamental group π1(E

×
τ ; ρ) of E×τ

with respect to any base point ρ is equal to the free group Fr(α, β) where α, β are as indicated
in the talk. Let ξ := rτ + s denote a coordinate on E×τ where (r, s) ∈ R2 \ Z2.

Consider the trivial bundle

C〈〈a, b〉〉 × E×τ → E×τ
with the “elliptic Knizhnik–Zamolodchikov–Bernard connection”

∇KZBf = df − ωKZBf

where

ωKZB := dr · a+ 2πiad(a)er·ad(a)Fτ (2πiξ, ad(a))(b)dξ

with

Fτ (ξ, η) :=
Θ′τ (0)Θτ (ξ + η)

Θτ (ξ)Θτ (η)
.

(Calaque–Enriquez–Etingof, Levin–Racinet, Hain–Matsumoto, Brown–Levin)
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Need Deligne’s theory of tangential base point to get something arithmetically nice.
We look at parallel transport with respect to the base point

~v0 := (−2πi)−1
∂

∂ξ
∈ T0(C/Z + Zτ)

which corresponds to the tangent vector

− ∂

∂z
∈ T1(C×/qZ)

to the Tate curve C×/qZ at 1 where q = e2πiτ , z = e2πiξ.
Similar to as before, we get

TKZB
−~v0,~v0 : Q[π1(E

×
τ ;−~v0, ~v0)]→ C〈〈a, b〉〉, γ 7→

∞∑
k=0

Reg

∫
γ

ωkKZB.

Define

A(τ) := TKZB
−~v0,~v0(α) ∈ C〈〈a, b〉〉

B(τ) := TKZB
−~v0,~v0(β) ∈ C〈〈a, b〉〉

which are Enriquez elliptic KZB associators.

Definition 1.4 (Elliptic multiple zeta values). The Q-vector spaces of A-elliptic and B-
elliptic multiple zeta values are defined by

EZA := spanQ{A(τ)|w|w ∈< a, b >},

EZB := spanQ{B(τ)|w|w ∈< a, b >}.
These are Q-subspaces of the ring of holomorphic functions on the upper-half plane.

Question 1.5. What are eMZVs after all?

Focus on B-eMZVs.
Let G2k(τ) denote the normalized Eisenstein series for SL2(Z) of weight 2k. Define

G(2k1, · · · , 2kn; τ) :=

∫ ~1∞

τ

G2k1(z1)dz1 · · ·G2kn(zn)dzn

where ki ≥ 0 and G0 := −1. Since the Eisenstein is nonzero at ∞, we need some regulariza-
tion (to make the integral converge), which was done by Brown.

Fact: Considered as a function of τ , the iterated integrals of Eisenstein series are linearly
independent, i.e., for any subfield K of C, there is an isomorphism

spanK{G(2k1, · · · , 2kn; τ)} ' K(g0, g2, g4, · · · )

which sends

G(2k1, · · · , 2kn; τ) 7→ g2k1 · · · g2kn .
Here K(g0, g2, g4, · · · ) denotes the free shuffle algebra.

Theorem 1.6 (Enriquez). Every B-eMZVs can be written as a Z-linear combination of
G(2k1, · · · , 2kn; τ) where Z denotes the Q-algebra of multiple zeta values.
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This rewriting is unique.
We get an embedding

ψB : EZB ↪→ Z〈g0, g2, · · · 〉.
The main goal is to describe the image of ψB. To describe Im(ψB), we need the following

definition.

Definition-Proposition 1.7 (Tsunogai). For every k ≥ 0, there exists a unique derivation

ε2k : L(a, b)→ L(a, b)

such that

(i) ε2k(a) = ad2k(a)(b),
(ii) ε2k([a, b]) = 0,

(iii) ε2k(b) has no linear term in a.

Let u := Lie(ε2k) denote the Lie algebra generated by ε2k inside Der(L(a, b)).

Conjecture 1.8. As Q-algebras,

EZB ' U(u)∨ ⊗Z ↪→ Z〈g0, g2, · · · 〉.

Theorem 1.9 (Lochak–Matthes–Schneps). This conjecture is true “modulo 2πi”.
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