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What is the Riemann zeta function?

Definition (Riemann zeta function)

The Riemann zeta function, ζ(s), is a function of a complex variable s that

analytically continues the sum of infinite series

ζ(s) =
∞∑
n=1

1

ns
,

which converges only when the Re(s) > 1.

Special values of ζ(s)

• For any positive even integer 2n:

ζ(2n) =
(−1)n+1B2n(2π)2n

2(2n)!
.

The numerator of Bernoulli numbers may contain a special kind of prime numbers,

called irregular primes. The first example of irregular prime is 691, which appears in

B12 = −
691

2730
.
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What are multiple zeta values?

Now we restrict ourselves to the values of the Riemann zeta function at positive

integers.

Definition (zeta values)

Any ζ(n) for an integer n ≥ 2 is called a zeta value.

Definition (multiple zeta values)

A multiple zeta value (MZV) is a real number of the form

ζ(n1, . . . , nr ) =
∑

0<k1<···<kr

1

kn1
1 · · · k

nr
r
,

where n1, . . . , nr−1 ≥ 1, nr ≥ 2 are integers. The number r is called the depth, and

the number N := n1 + · · ·+ nr is called the weight.

These numbers were first defined by Euler for r = 2 in late 1700’s, and they were

popularized by Zagier in the 1990’s, who discovered that they satisfy vast numbers of

relations.
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MZVs are iterated integrals

Definition (iterated integral)

Let M be a differentiable manifold and let ω1, . . . , ωn be smooth 1-forms on M.

Consider a smooth path γ : (0, 1)→ M. The iterated integral of ω1 · · ·ωn along γ is

defined (when it converges) by∫
γ
ω1 · · ·ωn :=

∫
0<t1<···<tn<1

γ∗(ω1)(t1) · · · γ∗(ωn)(tn).

Kontsevich showed that when M = P1 \ {0, 1,∞} and γ(t) = t is simply the inclusion

(0, 1)→ M, one has the following iterated integral representation of MZVs

ζ(n1, . . . , nr ) =

∫
γ
ω1 ω0 · · ·ω0︸ ︷︷ ︸

n1−1

· · ·ω1 ω0 · · ·ω0︸ ︷︷ ︸
nr−1

,

where ω0 = dt
t

and ω1 = dt
1−t

.

The shuffle product formula of iterated integral guarantees that the product of MZVs

is a linear combination of MZVs.
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motivic MZVs

Since the standard transcendence conjectures for MZVs are inaccessible, one can

replace the study of MZVs with motivic MZVs

ζm(n1, . . . , nr ),

which are elements of a certain algebra H =
⊕

k Hk over Q, which is graded by

weight. (Again, the shuffle product formula of motivic iterated integral guarantees

that the product of motivic MZVs is a linear combination of motivic MZVs.)

There is a period map

per : H → R

ζm(n1, . . . , nr ) 7→ ζ(n1, . . . , nr ).

Since the depth filtration D is motivic, one can define its associated graded algebra

grDH. The depth-graded motivic MZV

ζmD(n1, . . . , nr ) ∈ grDr H

is given by the class of ζm(n1, . . . , nr ) modulo elements of lower depth.
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Parity result

Theorem (Parity result)

When k 6≡ r (mod 2), we have

ζmD(n1, . . . , nr ) ≡ 0 (mod grDr−1H⊗Q Q[ζm(2)]).

Example

When r = 2 and k is odd, we have

• ζm(1, 2) = ζm(3)

• ζm(1, 4) = −ζm(3)ζm(2) + 2ζm(5)

• ζm(2, 3) = 3ζm(3)ζm(2) + 11
2
ζm(5)

...

• ζm(2, 9) = 9ζm(9)ζm(2) + 6ζm(7)ζm(4) + 4ζm(5)ζm(6) + 2ζm(3)ζm(8) + 28ζm(11)

...

But how can we compute those coefficients?
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Decomposition formula for double zeta values of odd weight

In 2012, Zagier proved the following decomposition formula for double zeta values of

odd weight, the existence of which was first predicted by Euler without the explicit

formula in 1770’s.

Theorem (Zagier, 2012)

The double zeta value ζ(m, n) (m ≥ 1, n ≥ 2) of odd weight m + n = k satisfies

ζ(m, n) = (−1)m

k−3
2∑

s=0

[(k − 2s − 1

m − 1

)
+
(k − 2s − 1

n − 1

)
− δn,2s + (−1)mδs,0︸ ︷︷ ︸

an integer

]
ζ(2s)ζ(k − 2s),

where ζ(0) := − 1
2

by convention. Indeed, the same formula works for the motivic

MZVs.
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What about double zeta values of even weight?

In 2006, Gangl, Kaneko and Zagier found a family of relations coming from cusp forms

of level 1 among double zeta values

{ζ(3, k − 3), ζ(5, k − 5), . . . , ζ(k − 3, 3)} ←− totally odd

of weight k modulo Qζ(k), when k is even.

The number of such relations (linearly independent ones) is exactly the dimension of

cusp form of weight k. Again, such relations are also relations among the motivic

double zeta values.

The first of such example happens in weight 12:

14ζ(3, 9) + 75ζ(5, 7) + 84ζ(7, 5) =
5197

691
ζ(12)

≡ 0 (mod Qζ(12)).
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Broadhurst-Kreimer conjecture

Conjecture (motivic Broadhurst-Kreimer conjecture)

The generating series of the dimensions of the spaces grDr Hk is given by

∑
k,r≥0

dimQ(grDr Hk )xky r =
1 + E(x)y

1− O(x)y + S(x)(y2 − y4)
,

where E(x) =
x2

1− x2
, O(x) =

x3

1− x2
, S(x) =

x12

(1− x4)(1− x6)
.

Example

r = 1 :
∑
k≥0

dimQ(grD1 Hk )xk = O(x) + E(x)

r = 2 :
∑
k≥0

dimQ(grD2 Hk )xk = O2(x)− S(x) + E(x)O(x)
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Summary

1. Parity result

2. Broadhurst-Kreimer conjecture

∑
k≥0

dimQ(grD2 Hk )xk = O2(x)− S(x)︸ ︷︷ ︸
k even

+E(x)O(x)︸ ︷︷ ︸
k odd

.

This S(x) is given by those GKZ-type relations.

3. Euler-Zagier decomposition formula of double zeta values of odd weight

Question: What about triple zeta values of even weight?

4. Gangl-Kaneko-Zagier type relations of double zeta values of even weight

Question: Any other GKZ-type relations?
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Topics

In this talk, we will cover the following results:

1. GKZ-type relations (arising from cusp forms) among double zeta values of odd

weight

2. generalization of the Euler-Zagier decomposition formula to triple zeta values of

even weight

3. generalization of Ihara-Takao’s result to double zeta values of level 2 and 3

4. generalization of Eichler-Shimura-Manin correspondence to newforms of level 2

and 3
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GKZ-type relation among double zeta values of even weight
The period polynomial of a cusp form of weight k and level 1 is defined to be

rf (X ,Y ) =

∫ i∞

0
f (τ)(τY − X )k−2dτ.

Theorem (Gangl-Kaneko-Zagier, 2006)

Let k ≥ 12 be an even integer, let

P(X ,Y ) =

b k−4
4
c∑

i=1

ai (X
2iY k−2−2i − Y 2iX k−2−2i )

be a restricted even period polynomial of weight k, and write

P(X + Y ,Y ) =

k−3∑
r=1

(k − 2

r − 1

)
qr,k−rX

r−1Y k−r−1.

Then the linear combination satisfies

k−3∑
r=3: odd

qr,k−r ζ(k − r , r) ≡ 0 (mod Qζ(k)).

Moreover, every linear relation arises in this way.
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Examples of GKZ-type relation

The even period polynomial (up to a scalar) of ∆ (weight 12 cusp form) is

36

691
(X 10 − Y 10)− (X 8Y 2 − 3X 6Y 4 + 3X 4Y 6 − X 2Y 8).

The restricted even period polynomial is

P(X ,Y ) = X 8Y 2 − 3X 6Y 4 + 3X 4Y 6 − X 2Y 8

P(X + Y ,Y ) = 1X 8Y 2 + 8X 7Y 3 + 25X 6Y 4 + 38X 5Y 5 + 28X 4Y 6 + 8X 3Y 7

From

630q9,3 = 630
1(10
8

) = 14

630q7,5 = 630
25(10
6

) = 75

630q5,7 = 630
28(10
4

) = 84,

Gangl-Kaneko-Zagier’s result tells us

14ζ(3, 9) + 75ζ(5, 7) + 84ζ(7, 5) ≡ 0 (mod Qζ(12)).
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Brown’s isomorphism
In order to generalize GKZ’s result to the motivic MZVs, we need the following result.

Theorem (Brown, 2013)

There exists a non-canonical algebra isomorphism

φ : H → Q〈f3, f5, . . . , f2n+1, . . .〉 ⊗Q Q[f2]

ζm(k) 7→ fk ,

where f2n := bnf n2 with bn ∈ Q× satisfying ζ(2n) = bnζ(2)n. It preserves the weight

grading and the depth filtration. The product in Q〈f3, f5, . . . , f2n+1, . . .〉 is given by the

shuffle product.

Example

When r and s are both odd, we have

φ(ζm(r , s) + ζm(s, r)) = φ(ζm(r)ζm(s)− ζm(k)) = fr x fs − fk = fr fs + fs fr − fk .

When r is odd and s = 2, we have

φ(ζm(r , 2) + ζm(2, r)) = φ(ζm(r)ζm(2)− ζm(k)) = fr f2 − fk .
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Reformulations of GKZ’s result in the motivic setting
When k ≥ 6 is an even integer, there is a matrix A2,k,oo, firstly defined by

Baumard-Schneps, and later by Brown in the motivic setting, such that

(fk−3f3, fk−5f5, . . . , f3fk−3) · A2,k,oo ≡ (φ(ζm(k − 3, 3)), φ(ζm(k − 5, 5)), · · · , φ(ζm(3, k − 3))).

Example

For example, when k = 12, we have

A2,12,oo =


28 42 −42 −27

15 15 −14 −15

6 1 0 −6

1 0 0 0

 .

It satisfies that

(f9f3, f7f5, f5f7, f3f9) · A2,12,oo ≡ (φ(ζm(9, 3)), φ(ζm(7, 5)), φ(ζm(5, 7)), φ(ζm(3, 9))).

GKZ’s result can be reformulated as studying the right annihilator of A2,k,oo.

The only element (0, 84, 75, 14)T (up to a scalar) in the right annihilator gives

84ζm(7, 5) + 75ζm(5, 7) + 14ζm(3, 9) ≡ 0 (mod Qζm(12)).
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Other known results about A2,k,oo

• The left annihilator of A2,k,oo is also well-understood by the previous work of

Ihara-Takao, Goncharov, Baumard-Schneps, Hain-Matsumoto, Brown, and etc.

The left annihilator consists of exactly the coefficients of the restricted even

period polynomials of the cusp forms of weight k.

Example

For example, when k = 12, we have

A2,12,oo =


28 42 −42 −27

15 15 −14 −15

6 1 0 −6

1 0 0 0

 ,

and

kerA2,12,oo = 〈(1,−3, 3,−1)〉Q.

• When k is even, A2,k,ee has been completely studied by Kaneko and Tasaka.
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Euler-Zagier’s decomposition formula revisited

Amazingly, Euler-Zagier’s decomposition formula can also be rewritten in such a

matrix form.

Theorem (Zagier (motivic version))

The motivic double zeta value ζm(m, n) (m ≥ 1, n ≥ 2) of odd weight m + n = k

satisfies

ζm(m, n) = (−1)m

k−3
2∑

s=0

[(k − 2s − 1

m − 1

)
+
(k − 2s − 1

n − 1

)
− δn,2s + (−1)mδs,0

]
ζm(2s)ζm(k − 2s).

Remember that

φ(ζm(2i + 1)ζm(2j)) = f2i+1f2j ,

we can reformulate Zagier’s decomposition formula by using the following two matrices

A2,k,eo and A2,k,oe.

Remark

Those four matrices A2,k,oo, A2,k,ee, A2,k,eo, and A2,k,oe have a unified expression.
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Zagier’s results and questions

Now when k is odd, we want to describe the left annihilator and the right annihilator

of A2,k,eo, and A2,k,oe.

Theorem (Zagier, 2012)

For any odd k ≥ 5, the determinant of the matrix A2,k,eo is nonzero.

Theorem (Zagier, 2012)

For any odd k ≥ 11, there is an injection i : Sk−1 ⊕ Sk+1 → kerA2,k,oe, where i |Sk−1

is given by the coefficients of the odd period polynomials, and i |Sk+1
is given by the

coefficients of the partial derivative ∂
∂X

of the restricted even period polynomials.

Question (Zagier)

How to characterize the right annihilator of A2,k,oe?

(⇐⇒ describe the linear relations among {ζm(odd , even)})
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Recall GKZ’s result

GKZ’s result generates the period polynomial relations between double zeta values of

even weights.

Theorem (Gangl-Kaneko-Zagier, 2006)

Let k ≥ 12 be an even integer, let

P(X ,Y ) =

b k−4
4
c∑

i=1

ai (X
2iY k−2−2i − Y 2iX k−2−2i )

be a restricted even period polynomial of weight k, and write

P(X + Y ,Y ) =

k−3∑
r=1

(k − 2

r − 1

)
qr,k−rX

r−1Y k−r−1.

Then the linear combination satisfies

k−3∑
r=3: odd

qr,k−r ζ(k − r , r) ≡ 0 (mod Qζ(k)).

Moreover, every linear relation arises in this way.
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Answers to Zagier’s question
My result generates the period polynomial relations between double zeta values of odd

weights, and there are two families of them.

Theorem (Ma, 2016)

(Type I): For each odd period polynomial p of weight k, we define br,s by

p(X + Y ,Y ) =
∑

r+s=k+1

(k − 1

r − 1

)
br,sX

r−1Y s−2.

Then ∑
r+s=k+1

4≤r≤k−2: even

(br,s − bs,r )ζ(s, r) ≡ 0 (mod Qζ(k + 1)).

(Type II): For each restricted even period polynomial p of weight k, we define cr,s by

∂

∂X
p(X + Y ,Y ) =

∑
r+s=k−1

(k − 3

r − 1

)
cr,sX

r−1Y s−1.

Then ∑
r+s=k−1

4≤r≤k−4: even

(cr,s − cs,r )ζ(s, r) ≡ 0 (mod Qζ(k − 1)).
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Two examples

The weight 12 cusp form produces two relations. One in weight 11, and the other in

weight 13.

Example

• The weight 13 relation coming from odd period polynomial of weight 12 is

P(X ,Y ) = 4X 9Y 1 − 25X 7Y 3 + 42X 5Y 5 − 25X 3Y 7 + 4X 1Y 9

−3ζ(13) = 24ζ(3, 10) + 28ζ(5, 8)− 10ζ(7, 6)− 36ζ(9, 4)

• The weight 11 relation coming from restricted even period polynomial of weight

12 is

P(X ,Y ) = X 8Y 2 − 3X 6Y 4 + X 4Y 6 − X 2Y 8

−3ζ(11) = 28ζ(3, 8) + 20ζ(5, 6)− 42ζ(7, 4)
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Two generalizations of A2,k

There are two possible generalizations of the matrices A2,k that we discussed before.

A2,k

higher depth

��

higher level

''
Ar,k A(2)

2,k ,A
′(2)
2,k︸ ︷︷ ︸

2 generalizations

, A(3)
2,k ,A

′(3)
2,k︸ ︷︷ ︸

2 generalizations

• The matrices Ar,k was first defined by Brown for the case of totally odd indexing

set oo · · · o. In such case, Koji Tasaka gave a closed formula in his thesis. Later,

Tasaka and I generalized such a formula to arbitrary indexing set. In particular, in

depth 2, our formula unified A2,k,oo, A2,k,ee, A2,k,eo, and A2,k,oe.
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Two generalizations of A2,k

• But for r ≥ 4, the right annihilator of Ar,k may not always give us linear relations

between MZVs.∑
k,r≥0

dimQ(grDr Hk )xky r =
1 + E(x)y

1− O(x)y + S(x)(y2 − y4)
,

r = 4 :
∑
k≥0

dimQ(grD4 Hk )xk = O4(x)− 3O(x)S(x)+ S(x)︸︷︷︸
fake relations

+ · · ·

• The matrices A(2)
2,k , A′(2)

2,k , A(3)
2,k , A′(3)

2,k were defined by me using results of

Deligne, Goncharov, and Glanois.
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Decomposition formulas for triple zeta values

One result we obtained by studying A3,k (k even) is the following decomposition

formula.

Theorem (Ma-Tasaka, 2016)

For any even integer k ≥ 8, we have

ζm(n1, n2, n3) ≡
∑

k1,k2≥2
k3≥2: even

n
(k1,k2,k3
n1,n2,n3

)
ζm(k1, k2)ζm(k3) (mod lower depth terms),

with explicit formulas for n
(k1,k2,k3
n1,n2,n3

)
.

Such a result generalizes Zagier’s decomposition formula for the double zeta values of

odd weight in the motivic setting.

I want to mention that Erik Panzer also proved such a decomposition formula for the

classic triple zeta values of even weights.
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MZVs of level N

Multiple zeta values of level N are defined by

ζ
(n1, · · · , nr
ε1, · · · , εr

)
:=

∑
0<k1<···<kr

εk1
1 · · · ε

kr
r

kn1
1 · · · k

nr
r
, εi ∈ µN , (nr , εr ) 6= (1, 1).

We also have the corresponding motivic version for them, denoted by ζm(·).

Theorem (Deligne, Deligne-Goncharov)

• For N = 2,

(2−2n − 1)ζm
(2n + 1

1

)
≡ ζm

(2n + 1

−1

)
.

• For N = 3,

ζm
(2n+1

1

)
(1− 32n) ≡ 2 · 32nζm

(2n+1
ε3

)
, ζm

(2n
1

)
≡ 0, ζm

( n
ε3

)
≡ (−1)n−1ζm

( n
ε−1

3

)
,

where ε3 = e
2π
√
−1

3 .
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Why two generalizations A(N)
2,k and A′(N)

2,k ?

Recall that

(fk−3f3, fk−5f5, . . . , f3fk−3) · A2,k,oo ≡ (φ(ζm(k − 3, 3)), φ(ζm(k − 5, 5)), · · · , φ(ζm(3, k − 3))).

There is only one choice for each f2n+1 = φ(ζm(2n + 1)).

But when N = 2, 3, we can choose

f2n+1 = φN

(
ζm
(2n + 1

1

))
or f ′2n+1 = φN

(
ζm
(2n + 1

εN

))
.

(They only differ by a scalar.)

Roughly speaking, two generalizations A(N)
2,k and A′(N)

2,k correspond to

(fk−3f3, fk−5f5, . . . , f3fk−3) · A(N)
2,k ≡

(
φN(ζm

( k−3,3

εN ,ε
−1
N

)
), φN(ζm

( k−5,5

εN ,ε
−1
N

)
), · · · , φN(ζm

( 3,k−3

εN ,ε
−1
N

)
)

)
.

(f ′k−3f3, f
′
k−5f5, . . . , f

′
3 fk−3) · A′(N)

2,k ≡
(
φN(ζm

( k−3,3

εN ,ε
−1
N

)
), φN(ζm

( k−5,5

εN ,ε
−1
N

)
), · · · , φN(ζm

( 3,k−3

εN ,ε
−1
N

)
)

)
.
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Left eigenvectors of A(N)
2,k

The left eigenvectors of A(N)
2,k are related to the level 1 Hecke eigenforms and Hecke

eigenvalues.

Theorem (Ma, 2016)

Let k be an even integer. When N = 2, 3, the vectors coming from the restricted even

period polynomials of cuspidal eigenforms of weight k for SL2(Z) are left eigenvectors

of A(N)
2,k , and the corresponding eigenvalues are given by

• N = 2,
λ2 − (1 + 2k−1)

2k−2
,

• N = 3,
λ3 − (1 + 3k−1)

4 · 3k−2
,

where λ2 (respectively, λ3) is the eigenvalue of the Hecke operator T2 (respectively,

T3) for the corresponding eigenform.
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Left eigenvectors of A′(N)
2,k

The left eigenvectors of A′(N)
2,k are related to the newforms of level Γ1(N).

Theorem (Ma, 2016)

Let k be an even integer. When N = 2, 3, the vectors coming from the restricted even

period polynomials of newforms of weight k and level Γ1(N) are left eigenvectors of

A′(N)
2,k , and the corresponding eigenvalues are given by

• N = 2,

−
(

1 +
ε

2
k−2

2

)
,

• N = 3,

−
1

2

(
1 +

ε

3
k−2

2

)
,

where ε ∈ {±1} is the eigenvalue of the Atkin-Lehner involution WN on the

corresponding newform.
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Why do both of them generalize the classic result

It is worth mentioning that in the proofs, we can see that the actions of A(N)
2,k and

A′(N)
2,k are nothing but the following two well-known operators (up to scalar) on the

corresponding spaces:

A(N)
2,k ←→ TN − 1− Nk−1 acting on r−,0f (x , y) of f ∈ Sk (SL2(Z))

A′(N)
2,k ←→ UN − 1 acting on r−,0f (x , y) of f ∈ Snewk (Γ1(N))±,

where r−,0f (x , y) denotes the restricted even period polynomial of f .

Note that those two theorems are compatible with the classic result, since when N = 1

both A(N)
2,k and A′(N)

2,k give us the

T1 − 1 = U1 − 1 = 0

action on the restricted even period polynomials of f ∈ Sk (SL2(Z)) (in this case,

Snewk (SL2(Z)) = Sk (SL2(Z))).
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Eichler-Shimura-Manin correspondence for newforms of level 2 and level 3

Also the matrices A′(N)
2,k give us a characterization of the restricted even period

polynomial of a newform of level 2 and 3.

Theorem (level 1 Eichler-Shimura-Manin correspondence)

The map

r−,0 : Sk (SL2(Z))→W−,0k

is an isomorphism over C

Conjecture (Ma, 2016)

We have the following isomorphisms defined over C:

Snewk (Γ1(2))± ∼= (W
(2),−,0
k,new )± :=

{
p(x , y) ∈ C[x , y ]

∣∣∣∣∣
−p(y,x)−p(y,x+y)

+p(x,x+y)=−p(x,y)

−p(y,2x)=±2
k−2

2 p(x,y)

}
,

Snewk (Γ1(3))± ∼= (W
(3),−,0
k,new )± :=

{
p(x , y) ∈ C[x , y ]

∣∣∣∣∣
−p(y,x)−p(y,x+y)+p(x,x+y)

−p(y,x−y)+p(x,x−y)=−p(x,y)

−p(y,3x)=±3
k−2

2 p(x,y)

}
.
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THE END
Hope you enjoy!
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