
QUOTIENTS OF THE LIE LIE ALGEBRA
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Abstract. We study two quotients of the Lie Lie algebra (the Lie algebra of symplectic
derivations of the free Lie algebra), namely the abelianization and the the quotient by the
Lie algebra generated by degree 1 elements. The abelianization has a very close connection
to the homology of groups of automorphism groups of free groups, whereas the second is
the so-called “Johnson cokernel,” the cokernel of the Johnson homomorphism defined for
mapping class groups of punctured surfaces

This work is partially joint with Karen Vogtmann and Martin Kassabov. Different parts
are joint with different people and some of it is just by myself. So what is the Lie Lie
algebra? It’s the symplectic derivation algebra that we’ve seen before.

Consider Derω(L(V )), derivations of the free Lie algebra L(V ) on a finite dimensional
symplectic vector space V which kill the symplectic element ω. If p1, . . . , pn, q1, . . . , qn is
a symplectic basis for V , then ω =

∑n
i=1[pi, qi]. The derivations such that D(ω) = 0 form

the Lie Lie algebra.

Previously, in the conference, for example in Alekseev’s talk, V was just 2 dimensional,
since he was interested in the elliptic case. For us, we’re mostly interested in the stable
case, which means we’re going to think of V as being very high dimensional.

So our derivations X, satisfy X(ω) = 0. In the elliptic case, this just means that X kills
the bracket of the two generators, whereas in general you actually have to kill the sum of
the brackets of the generators.

Let’s review the graphical interpretation of the Lie algebra, which we denote D(V ) for
short. D(V ) is the k-span of unitrivalent trees (where k is a characteristic 0 field) where
the trees have a cyclic ordering at every trivalent vertex and univalent vertices are labeled
by vector space elements. There are three relations, AS, IHX and multilinearity:
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Multilinearity is the bottom right relation: if av1 + bv2 labels a univalent vertex, with
a, b ∈ k, v1, v2 ∈ V , we can pull it apart as shown. Also, if you think of your trees in the
plane, then the cyclic order is induced by the planar orientation, so a lot of times you don’t
even bother to write that into the picture.

This is actually the way I like to think about this symplectic derivation Lie algebra. There
is a nice graphical interpretation of what the bracket is. The bracket between two trees
is defined by summing over all ways of gluing a univalent vertex from the first tree onto
a univalent vertex from the second tree. The labels of the two univalent vertices that
are glued get contracted by the symplectic form. In the following picture I’ve shown one
example of two vertices being joined, and then the sum sign is to indicate that this should
be done for all pairs of univalent vertices.

The theorem is that there is an isomorphism from D(V ) to this graphical thing, and under
that isomorphism the bracket goes to this graphically defined bracket.

What’s so useful about this Lie algebra? Let’s look at D+(V ), the degree > 0 part, which
means there exists at least one trivalent vertex. D+ has a couple different applications.
The abelianization D+/[D+, D+], this actually gives rise to homology classes for the outer
automorphism group of the free group. This is one reason I came to be interested in this
Lie algebra. It also has another application: it’s connected to the mapping class group
Mod(g, 1), the mapping class group of a genus g surface with one boundary component
Σg,1. There’s a filtration of the mapping class group, due to Johnson, defined as follows.
You have a map:

Mod(g, 1)→ Aut(π1(Σg,1))
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defined since an automorphism of the surface induces a self map on π1 of that surface
(which is just a free group here.) This induces a map

Mod(g, 1)→ Aut(π1(Σg,1)/LCSn+1(π1(Σg,1))),

where LCSn+1 is the n + 1st term in the lower central series. The kernel of this map is
Jn is the (nth term in the Johnson filtration. For example, when n = 1, you’re dividing
by the commutator subgroup, so J1 is the kernel of the map to the first homology of the
surface. So you are looking at mapping classes that act trivially on first homology. I.e. J1
is the Torelli group.

Now I can form the associated graded, j = ⊕n(Jn/Jn+1) ⊗ k. It turns out that {Jn} is
a central filtration, so Jn/Jn+1 are abelian groups, and we can tensor with the field k.
The group commutator induces a Lie bracket on j. So j is a Lie algebra. There is a map,
called the Johnson homomorphism, which embeds this Lie algebra inside the symplectic
derivation algebra, where V is the first homology of the surface.

The Johnson homomorphism is denoted τg:

τg : jg → D+(H1(Σg,1)).

(We’ve also indicated j’s dependence on g as well.)

Here is a brief sketch of the definition. Suppose ϕ ∈ Jn, then ϕ(x) = x ·ψxm where ψx is a
commutator of degree n+1. Look at

∑
b∈basis b⊗ψb, where I think of ψb as being an element

of the free Lie algebra as opposed to a group commutator. Let V = H1(Σg,1). I can think
of this as being inside V ⊗ L(V ), and V is naturally isomorphic to V ∗, because I have a
symplectic form. Then V ∗⊗L(V ) is isomorphic to derivations of L(V ), because a derivation
of a free Lie algebra is determined by what it does to the generators. That’s not the
symplectic derivations, but the fact that your mapping class preserves the boundary, if you
trace through the definition, means that the derivation kills the symplectic element.

One thing that’s interesting is to try to determine the image of the Johnson homomorphism.
This is where what I’m saying is related to the topic of this conference, although I don’t
know the details. If you look at D+(V )/im(τ) = C, this is called the Johnson Cokernel.
Somehow the absolute Galois group Gal(Q/Q) is related to this cokernel, and there is an
embedding

L(σ3, σ5, . . .) ↪→ C.

I know this embedding exists, but I don’t know the full story.

We are interested in C as a vector space, or more precisely, as an SP (V )-module.

Theorem 1 (Hain). im(τ) is generated as a Lie algebra by the degree 1 part of D+(V ),
i.e. by labeled tripods.

So now the Johnson cokernel can be defined completely algebraically as C = D+(V )/〈tripods〉.
Note C � D+/[D+/D+] in degree ≥ 2. So the abelianization gives us information about
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the cokernel. It turns out that it is enormously complicated and that we don’t fully under-
stand it. To paraphrase a certain politician, “Who knew that it could be this complicated?”
Sad!

It turns out there is a rank that can be defined which came out of my work with Kassabov
and Vogtmann. It is an additional grading of D+

ab
∼= ⊕r≥1D

+
ab[r].

Rank 1: (Morita).

D+
ab[1]⊕n≥1 S

2n+1(V )

Morita conjectured that that was the entire abelianization, which I believed for a long
time, but it turns out that that was wrong.

Rank 2: (Conant-Kassabov-Vogtmann)

D+
ab[2] ∼=

⊕
k>`≥0

[2k, 2`]SP ⊗ S2k−2`+2⊕⊕
k>`≥0

[2k + 1, 2`+ 1]SP ⊗M2k−2`+2

where Sw is the space of cusp forms of weight w andMw is the full space of modular forms
of weight w, and [λ]SP is a symplectic representation, corresponding to partition λ.

So in rank 2 things are beginning to look more complicated. We’re getting all these
symplectic representations, with multiplicities given by these modular form spaces. Note
that rank 2 is completely done and understood!

We remark that the modular forms here ultimately come from the cohomology of GL2(Z)
with coefficients. In fact, I should mention that the SP -decomposition above is isomorphic
to the GL decomposition of H1(GL2(Z);S(V ⊗ k2)). Here GL2(Z) actually acts on the
k2 in the coefficients, and the S here refers to the full symmetric algebra. The different
powers will give different weights of modular forms.

Now we move on to rank 3. I will explain the results there and then go back to give the
main construction.

Rank 3:

Theorem 2. The representation [a, b, c]SP has multiplicity at least sa−b+2+sb−c+2+δa,b,c+

εa,b,c in D+
ab[3], where sw is the dimension of spaces of cusp forms of weight w, εa,b,c = 1 if

a > b > c are all even, and 0 otherwise, and δa,b,c = sa−b+2 if a−b = b−c and 0 otherwise.

So in rank 3 we’re getting a lot of stuff as well. It’s the same basic form as the rank 2 case,
symplectic representations with multiplicities given by modular forms, but a little more
complicated.

Now let me explain where this comes from. It comes from a graphically defined trace map,
which is a generalization of the divergence mentioned in Alekseev’s talk.
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Trace map: Take a tree with different labels and sum over adding external edges in all
possible ways.

Give the new edge an arbitrary direction,and put a coefficient which is the contraction of
the two labels.

Now I want to interpret these graphs with extra edges. I can think of them as being part
of a graphical chain complex, which we call hairy graphs. The target of our trace is hairy
graphs. Indeed, we have a chain complex:

...

��

...

��∧2D+ Tr//

��

(hairy graphs)2

∂
��

D+ Tr// (hairy graphs)1

If I’m interested in studying the abelianization, that’s the first homology of the Lie algebra
D+, and I have the Chevalley-Eilenberg complex on the left which will compute this. On
the right, in degree 1, I have trees with several edges on the outside. In degree 2, hairy
graphs are two trees connected up by edges. There’s a boundary operator on hairy graphs.
You sum over joining trees together along the extra edges.
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There are some signs and things that I’m ignoring. They are important but also kind of
technical. In the above picture, I have the chain complexes on the left, examples of hairy
graphs in degrees 1 and 2 in the middle, and an example of a boundary operator on the
right.

The theorem is that the trace is a chain map: the graph boundary operator corresponds
exactly to taking brackets, and it is injective on homology. So, if we care about the abelian-
ization of D+, we should care about the first homology of the hairy graph complex.

There’s even more we can do at this point, and this will allow me to advertise a little bit
more my work with Martin. This is where we get the connection to Out(Fr). If we look
at the hairs, we can think of these as elements either of the symmetric algebra or the free
associative algebra. In the picture below, I’ve given an example of this. A string of hairs
gives us an element h sitting on an edge where h can be thought of as lying either in S(V )
or T (V ). (Obviously one carries more information than the other.)

Now I can think of hairy graphs as (non-hairy) graphs with edge labels in a Hopf alge-
bra. (See the left of the picture below.) In fact the IHX relation corresponds to pushing
labels through a trivalent vertex via the coproduct ∆(h) =

∑
h(1) ⊗ h(2), as on the right

below.
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In Karen’s talk, we saw that if there are no labels, this corresponds to the cohomology of
Out(Fn), with trivial coefficients. This is because the homology of Out(Fn) is a moduli
space of graphs (the quotient of Outer Space by the group action). These graphs have no
hairs.

This general graph homology construction works for H a cocommutative Hopf algebra
H. You also need that the antipode squared is the identity, but this is automatic for the
cococommutative case. Now

Homology of H-labeled graphs ∼=
⊕
n≥2

H∗(Out(Fn);H⊗n)

Part of what we did was to define an action of Aut(Fn) on the nth tensor power of a co-

commutative Hopf algebra. H⊗n is an appropriate quotient on which inner automorphisms
act trivially, so that Out(Fn) acts.

The trace map defines an injective map

Tr : D+
ab ↪→

⊕
n≥2

H2n−3(Out(Fn);S(V )⊗n)⊕Morita rank 1 part

Rank 1 is a little different since Out(F1) doesn’t correspond to a moduli space of rank 1
graphs.

In fact, the same map induces a map on the Johnson cokernel

Tr : C →
⊕
n≥2

H2n−3(Out(Fn);T (V )⊗n)⊕ rank 1 part

and this target is even bigger than that of the abelianization.

Notice that the rank I alluded to earlier is the n in these statements.

Note S(V )⊗n ∼= S(V ⊗kn) and it turns out that the Out(Fn) action on this factors through

the GLn(Z) action on kn. On the other hand, the action on T (V )⊗n does not factor through
a GLn(Z) action in general, and even for n = 2, when Out(F2) = GL2(Z), the action on

T (V )⊗2 does not extend to a GL2(k) action.
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We also know, that in both of the above cases, Tr hits every [λ]SP inside each [λ]GL.
So for the abelianization we have a complete characterization. For the more general
Johnson cokernel case, we understand the image, but the map is not injective. More-
over H2n−3(Out(Fn);H⊗n) is not understood at all for n > 3. For H = S(V ), we used
known facts about the homology of GL2(Z) with coefficients to get a full answer. For
n = 3, I did a partial computation, but for n > 3, it’s completely unknown. It’s even
worse for H = T (V ). Martin and I did a bunch of computations for rank 2 and we got
stuff that generalizes what you get in the abelianization, and in rank 3 I did some more
computations. It’s a very difficult question to compute these cohomologies.












