
Galois theory for motivic cyclotomic multiple zeta values
(CMZV)

Algebra of periods: P Period:
∫
γ
ω, algebraic function, algebraic domain.

P contains π, zeta values, MZV, log(α), α ∈ Q and many of interesting constants. Should be ex-
tended by 1

π as Annette explained.

1 MZVµN at roots of unity

Definition (for N = 1, usual MZV)

MZVµN : ζ

(
n1, . . . , np
ε1, . . . , εp

)
:=

∑
0<k1<k2···<kp

εk11 · · · ε
kp
p

kn1
1 · · · k

np
p

where
{
ni ∈ N∗, εi ∈ µN
(np, εp) 6= (1, 1)

(1)

They have writing in terms of the following iterated integrals (hence periods):

= (−1)pI(0; η10n1−1 · · · ηp0np−1; 1)

where I(0; a1, . . . , an; 1) :=

∫
0<t1<···<tn<1

ωa1(t1) · · ·ωan(tn) , and ωa =
dt

t− a

with ηi = (εi · · · εp)−1.
In these notations, the weight is w =

∑
ni, the depth is p.

Examples: In depth 1,  values classical polylog at roots unity:

ζ
(n
ε

)
= (−1)nI(0; ε−10n−1; 1) = Lin(ε)

In depth 1, weight 1:I

ζ

(
1

ε

)
= −log(1− ε−1) cyclotomic units modulo torsion

Relations :
In depth 1, we conj know all relations (easy exercice to check them). They are coming from:

· Conjugation relation, here modulo (2iπ):

ζ
(n
ε

)
∼= (−1)n−1ζ

(n
ε

)
ξan − 1 = −ξan(ξ−an − 1)

IRelated to cyclotomic units modulo torsion. Cf. Algorithm to build a basis of cyclotomic units modulo torsion for
any N for instance in a recent article of Conrad.
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· CyclotomicI relation, for each d dividing n, ε ∈ µN
d
:II

ζ
(n
ε

)
= (d)n−1

∑
ηd=ε

ζ

(
n

η

)

Nota Bene: This distribution easily generalises to higher depth.

What about higher depth? These numbers have a rich algebraic structure III, but let’s mention the
most important:

· Shuffle relation coming from multiplication of iterated integrals (II).
Ex: ζ(2)ζ(3) = 3ζ(2, 3) + 6ζ(1, 4) + ζ(3, 2)

· Stuffle coming from multiplication of series.
ζ(2)ζ(3) = ζ(2, 3) + ζ(5) + ζ(3, 2).
These 4 previous relations, once lifted to higher depths, and regularised, are refered to as
standard relations by Zhao, and for some N, 1,2,3, or power of prime greater than 3, are
conjecturally sufficient to generate all relations between MZV at roots of unity, but not for the
other N.

· MMZV at roots of unity are linked with the geometry of XN = P1�0,∞, µN .
Octogon (hexagon for N = 1) correspond to a contractible path in XN , cf. figure below.
By Betti de Rham comp isom, this leads to bunch of identities, written in terms of the generating
series (cf.Drinfeld associator); note that different segments in these paths are related to the
straight path via symmetries (permutation and dihedral symmetry of XN ).

· Pentagon relation for N = 1, in same vein, corresponding to a contractible path in M0,5 =
{(0, 1, x, y,∞) : x, y ∈ P1�{0, 1,∞}, x¸ 6= y}. It lifts for other roots of unity to the degree N2

covering M̃0,5 ofM0,5. IV

0dch10 1

ξN

∞

Definition: ZNn as Qvector space gen by MZVN of weight n.

Question: Dimension?

Fact: (comes from motivic theory, as see later), there is an upper bound for dim: dNn ≤ DN
n where∑

DN
n t

n =
1

1− (aN + 1)t+ (aN − bN )t2
, N > 2

1

1− t+−t2
N = 2,

where aN = φ(N)
2 + p(N)− 1, bN = phi(N)

2 .
However, this upper bound not reached for N = ps, p > 5.

IAlso called distribution relation.
IISince

∑
ηd=ε η

k = dε
k
d if d divides k, 0 else.

IIIRemind that the only relations between periods should (conj) come from rules of elementary integral calculus:
additivity integrand or domain, invertible change variables, Stokes form

IVCf. Hadian.
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Cohomological point of view Another way of seeing those periods, as Annette explained is as
coeff pairing between relative algebraic de Rham cohomology and relative singular homology.I

A period is a coefficient of the pairing between algebraic De Rham cohomology and relative
singular homology:

∫
γ
ω = 〈[γ], compB,dR([ω])〉.

Setup here: k a cyclo field.

• X smooth algebraic variety�k, Y closed subvariety�k.

• [ω] ∈ Hn
dR(X,Y ), ω closed algebraic n-form on X whose restriction on Y is zero.II

• [γ] ∈ HB
n (X,Y ),γ is a singular n chain on C points of X whose border is in Y. For Betti

homology, we have to fix an embedding σ : k ↪→ C.

• Comparison isomorphism due to Grothendieck, once tensor by C:

compB,dR : H•dR(X,Y )⊗k C −→∼ H•B(X,Y )⊗Q C

Ex:

• X = P1 r {0,∞}, Y = ∅: γ0 counterclockwise loop around 0:

HB
1 (X) = Q [γ0] H1

dR(X) = Q
[
dx

x

]
,

∫
γ0

dx

x
= 2iπ

Period of Lefschetz motive L := Q(−1) = H1(X), dual to Tate motive Q(1).

• For X = P1 r {0,∞}, Y = {1, n}:

HB
1 (X,Y ) = Q [γ0]⊕Q [δ1,n] H1

dR(X,Y ) = Q [dx]⊕Q
[
dx

x

]
Hence the period matrix:

(
1 log(n)
0 2iπ

)
.

Variant For X = P1 r {ξ,∞}, Y = {0, 1}, period matrix:
(

1 log(1− ξ−1)
0 2iπ

)
Remark: Often given a period, usually hard to find X and Z such that is coefficient of the associated
period matrix. For most interesting periods, poles of diff forms meet integration domain, and has to
blow up points to avoid singularities: already for ζ(2), some work to define it properly like this.

IDefined up to choice of basis of Betti homology and de Rham cohomology.
Nota Bene:For affine var, all class in de Rham cohomology represented by differential form and this pairing corresponds
to integ.

IIHypercohomology of the complex of algebraic (rational and holo) differential forms on X (Kahler). Agree with the
hypercohomology of the analytic de Rham complex (smooth diff form) for affine variety. For smooth complex varieties
isomorphic (Groth) to the usual smooth de Rham cohom (exterior derivative), coefficients in k.
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2 MMZVµN

Motivic scenery: k cyclotomic field, I

· There is a tannakian category MT (k)Q of Mixed Tate Motives over k with rational coeffi-
cients, ie every objectM ∈MT (k)Q is an iterated extension of Tate motives Q(r) = Q(1)⊗r, r ∈
Z

· equipped weight filtration W−2r indexed by even negative integersII. This defines a:

· fiber functor
ω : MT (k)→ VecQ

M 7→ ⊕HomMT (k)(Q(r), grW−2r(M))
.

· Tannakian category hence a category of (finite dimensional) representations of a Motivic
Galois group GMT ; a motive can be seen as vector space (realisation) more an action of
this Galois group.

MT (k)Q ∼= RepkG ∼= Comod (O(G)) ∼= Comod grA (2)

· the motivic Galois group :G := Aut⊗ω = GmnU where GMT decomposes (since ω graded
for MT, the pro-reductive part is simply Gm), as semidirect product multiplicative group and
prounipotent part U.

· The fundamental Hopf algebra: A := O(U) ∼=.
By Borel results on K theory, we know the extension groups, and the dimension of An as a Q
v.s.III

· We can also define a tannakian subcategory: MT Γ, for Γ sub-vector space of k∗ ⊗ Q =
Ext1MT (k)(Q(0),Q(1)) such that AΓ maximal sub-Hopf algebra in Ak such that A1

∼= Γ.
Cf. the isomorphism : loga(a)↔ a.IV

· HERE, for CMZV, interested in the following categories,

Category : MT (O) ( MT N ⊂ MT (O[
1

N
])

The seconde inclusion is an equality iff N has all its prime factors p inert ie generating (Z/mZ)∗,
for N = pvp(n)m.

Corresponding Γ : O∗ ( cyclotomic units
in O[ 1

N ]
( (O[

1

N
])∗ · · · modulo torsion!!

The motivic MZVµN are inMZN ⊂MT N .
The fundamental Hopf algebra (for N > 2V) has bN = φ(N)

2 generators in degree > 1, aN in
degree 1

A ∼=n.c Q〈f (ji)
i 〉, �,∆D, f

(j)
i degree i

with aNrespectively :
φ(N)

2
− 1 resp.

φ(N)

2
+ pN − 1 resp.

φ(N)

2
+ nN − 1

By Dirichlet theorem for S integers, with nM the number of prime ideals in O above the primes
dividing N, and pN the number of primes dividing N.

IHence conjecture annulation Beilinson Soule ok here.
IIgrW−2rM direct sum of Q(r)

IIIExt1MT (k)(Q(0),Q(n)) ∼= K2n−1(k)Q ⊗ Q ∼=

 k∗ ⊗Z Q if n = 1.
Qr1+r2 if n > 1 odd
Qr2 if n > 1 even

Q
φ(n)

2 for n > 1, N > 2.

IVExt1 is Γ : ∀ 0→ Q(n+ 1)→ E → Q(n)→ 0, E is in Γ.
VFor N = 1, 2, 1 generators in each odd degree > 1, resp ≥ 1.
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Motivic periods LetM our cat of MTM, and look finally at its motivic periods.

• Algebra of motivic periods: alg of affine function on bitorsor of tensor preserving isomor-
phisms of functor:

Algebra motivic periods : Pm
M := O(Isom⊗(ω, ωB))

between fiber functor and Betti realisation functors,I,once fixed an embedding from k to C.
Note the groupoid structure (composition) for isomorphism of functors would lead, by dualising
to a comultiplication..
Motivic period denoted as a triplet, with a motive of this MTM cat, and classes in realisations
of M:II

Motivic period : [M,v, σ]
m

M ∈ Ind (M), v ∈ ω(M), σ ∈ ωB(M)∨

• Its period is obtained by evaluation on the complex point compB,dR:

Its period : per([M,v, σ]
m

) := 〈compB,dR(v ⊗ 1), σ〉

Here the period morphism, conjectured isomorphism (grothendieck):

period morph : per :Pm → P.

Nota Bene: Following this definition, have a right action motivic Galois group on motivic periods

Pm × G → Pm

 (under period conjecture) a Galois theory of periods.

Examples:

· Motivic 2iπ Lefschetz motivic period Lm = [H1(Gm), [dxx ], [γ0]] = (2iπ)m.

· Motivic log motivic period of Kummer motive Kp = H1(P1�{0,∞}, {1, p}), inMT (Q)III

logm(p) = [Kp, [
dx
x ], [δ1,p]]

· Motivic II: Motivic period associated to motivic fundamental groupoid.

Im(0;w; 1) :=
[
O (0Πm

1 (XN ))) , w,0 dch
B
1

]m
with 0dch

B
1 image of straight path from 0 to 1 in Betti realisation dual.

Its period is the corresponding II I(0;w; 1).
Once defined these motivic iterated integrals (MII), can define MMZVµN .

IωdR in V eck but ω, ωB in V ecQ. ωdR ∼= ω ⊗Q k.
IIIt is a function Isom⊗(ω, ωB) → A1, which, on its rational points is: α 7→ 〈α(v), σ〉.

IIIExt1MT (Q)(Q(0),Q(1)) ∼= Q∗ ⊗Z Q ∼= ⊕p prime Q, in Mixed Motive category, should have short exact sequence
(implied by long exact sequence in cohomology) 0→ Q(1)→ Kp → Q(0)→ 0
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Aparte, about motivic fund gp :

· Betti:
fund gpoid : π1(XN , x, y) freely generated by γ0, · · · , γN
Prounipotent (Malcev) completion, affine group scheme, is the Betti realisation of πm1 :

xΠB
y = Πun(XN , x, y) : R 7→

{
S ∈ R〈〈e0, (eη)η∈µN 〉〉×|

∆S = S ⊗ S
ε(S) = 1

}
I Remark: Using Beilison theorem, can show that the ring of function over this prounipotent
completion defines a mixed Tate object in MT (k). Goncharov, in the case of tangential base
points (only! From now on, tangential base points), can show that it has a good reduction
outside Nhence:

O
(
xΠm

y

)
∈ IndMT

(
ON

[
1

N

])
⊂ IndMT (kN ). (3)

· ω(O(0Πm
1 )) ∼= Q 〈ω0, (ωη)η∈µN 〉 graded Hopf alg with � product, deconcatenation coprod.

· Groupoid structure of Πm roughly represented below.

· Dihedral action DiN = Z/2Z n µN acts by permuting tangential base points. Can restrict
to the motivic bitorsor of path 0Πm

1

η

0 1

ηΠ1

ηΠ0

ηΠη

0Πη

0Π1
0Π0 1Π1

1Πη

1Π0

IThe completion of π1(XN , x, y) is the Hopf algebra of all non commutative formal series with N + 1 generators,
coproduct such that ei primitive, Π̂ = lim←Q[Π]�In. Its affine ring of regular functions is the graded Hopf algebra
with � product, deconcatenation coproduct: O(Πun(XN )) ∼= Q

〈
e0, (eη)η∈µN

〉
.
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Motivic MZVµN :

• Let HN = Pm,+
MZN Q-subvector space generated by MMZV at N roots unity.

MMZVµN are geometricI motivic periods of MZN generated by the motivic fundamental
group of P1�0,∞, µN .II
Since,MZN ⊂MT N  Upper bound on dimensions ofMZN .III
Sometimes: these space are equals: πm

1 generate MZN . Proven for: N = 1, 2, 3, 4, 6, 8,
Brown, Deligne.
Not equal: for N = ps prime > 3.

• The period morphism here:
per : HN → ZN

ζm(·) 7→ ζ(·) .

Permit us to deduce results from cyclotomic MMZV on complex numbers: a basis for MMZV
gives generating family for MZV. Moreover, conjecturally same, do not loose any informa-
tion.

• Hopf algebra struct of MMZVµN , brought by dualising motivic Galois action on motivic
periods:

(Goncharov,Brown) explicit coaction on MMZVµN ∆ : HN → AN ⊗Q HN

This coaction has an explicit a combinatorial form, which enables to prove relation up to rational
coefficients, but notably linear independence results.
The weight graded part of the coaction:

DrI
m(a0; a1, · · · , an; an+1) =

∑
i

Ia(ai; ai+1, · · · , ai+r; ai+r+1)⊗Im(a0; a1, · · · , ai, ai+r+1, · · · an; an+1)

It also conveys the Galois descents informations, as we will see below. Ex:

D1

(
ζm
(

3, 3

−1,−1

))
= D5(ζm

(
3, 3

−1,−1

)
) = 0

IGenerated by motives with positive weights.
IIBeware, for N = 1, 2, consider the subset Pm,+

M,R invariant by real Frobenius.
III And hence of ZN .
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3 Motivic Galois Theory For MMZVµN

Motivic Galois theory As seen, there is a right action of motivic Galois group on motivic peri-
ods. If conjecture of periods hold, for each period p, there would be Galois conjugates, and a
Galois group associated to p I which permutes them.

Examples:

Period Conjugates Galois repr rank deg Unip Hodge polynomial Galois gp
(πm)k Q∗(πm)k (λkg) 1 0 (uv) Gm

logm(p) Q∗ logm(p) +Q
(

1 α
(p)
g

0 λg

)
2 1 1 + uv Q∗ nQ

ζm
(
n
ξ

)
Q∗ζm

(
n
ξ

)
+Q

(
1 β

(n)
g

0 λng

)
2 1 1 + (uv)n Q∗ nQ

ζm
(

1,3
−1,−1

)
Q∗ζm

(
1,3
−1,−1

)
+Qζm

(
3
−1

)
+Q

1 β
(3)
g β

(1,3)
g

0 λ3
g λ3

gβ
(1)
g

0 0 λ4
g

 3 2 1 + (uv)3 + (uv)4

Here ξ is a primitive N root of unity, n 6= 1, N > 2 II.

Reduced coaction : ∆′(ζm
(

1, 3

−1,−1

)
) = ζa

(
1

−1

)
⊗ζm

(
3

−1

)
, ∆′(ζm

(
1, 3

1,−1

)
) =

7

3
ζa
(

3

−1

)
⊗ζm

(
1

−1

)
g.MP = MP.repr, λg ∈ Q∗, other in Q.

Remarks:

• A unipotency degree 0: periods of pure motives; unipotency degree 1: periods of simple exten-
sions.
Unipotency degree k if LkU acts trivially, with L the lower central series.

• The rank, dimension of the representation associated.III

• Could also associate other invariants, like Hodge numbers (here type (n, n) for CMMZV weight
n) or even a Hodge polynomial.
 Can classify motivic periods via representation theoretic properties.

Galois descent : The idea is to look at, for N ′ | N :

Question 1: How motivic periods of MT N ′ embeds into periods ofMT N .

! explicit CNS on the infinitesimal derivations Dr

(modulo smaller depth if there is a change of field)

Question 2: When a MZVµN ∈ V ectQ〈MZVµN′ 〉.

NB: Because there is not always isomorphism between HN and HMTN , not always equivalent.IV

The picture:

(HMT N )G
N/N′

= HMT N′

ILargest quotient of G which acts faithfully on M(p)
IIFor N = 1, 2 has to distinguish even or odd weights

IIIFor α algebraic, rank is the dimension of the vector space spanned by conjugates, ie the degree of minimal
annihilating polynmial.

IVGalois descent applies to HMTN . For N ′ = 1, 2, iπm has to be replaced by ζm(2), since only periods inv by Frob
F∞ in HN′

.
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HMTN

HMTN′

GN/N
′

OO

Q[Lm]

UN
′

OO

Q

Gm

OO

GN

CC

Example: Case of the descent between MES and MMZV, the criteria depends only on weight 1
graded of the coaction:

Z a MES is a Q CL MZV ⇔ D1(Z) and ∀r 6= 1, Dr(Z) MMZV

Ex: For ζm
(

3,3
−1,−1

)
, we can check that D1(•) = 0, D5(•) = 0, which implies ζm

(
3,3
−1,−1

)
∈ H1.

What else?:

• Coming from category above to reach category underneath: can bring new basis of HMTN′ in
terms of motivic periods in HMTN , or correct a term in HMTN in order it lies in the category
underneath HMTN′ .
Ex: Basis of MMZV with Deligne basis for MES.
ζ
(

3,3
1,−1

)
− 6ζ

(
1,5

1,−1

)
∈ H1.

• Finding "missing" periods: As said above, for N power of prime, p > 3, the fundamental
groupoid does not generate the category, but using these Galois descents is a way to recover
some or all missing periods.
Example: for p = 5, can reach motivic periods in MZ5 which are not MMZVµ5 by coming
from the catMZ10 (i.e. with MMZVµ10

).

• Also enables to reach "new" motivic period spaces, not known to be associated to a funda-
mental groupoid, and did not knew the motivic periods explicitely.

Example: Basis of HMT (Z[ 1
3 ])

n in terms of MZVµ3
.

• Can define Higher ramification spaces FiHN (increasing motivic filtration) corresponding
to generalized Galois descents.
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