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1. Valuation spectra and Huber/Tate rings

1.1. Introduction. Although we begin the oral lectures with a crash course on some basic high-
lights from rigid-analytic geometry in the sense of Tate, some awareness of those ideas is taken as
known for the purpose of reading these written notes that accompany those lectures. The intro-
ductory survey [C2] provides (much more than) enough about such background from scratch (with
specific references to the literature for further details).

Let k be a non-archimedean field (i.e., a field complete with respect to a non-trivial non-
archimedean absolute value | · | : k → R≥0). For a k-affinoid algebra A, on the set Sp(A) =
MaxSpec(A) Tate defined a notion of “admissible open” subset and “admissible cover” of such a
subset in a manner that forces a compactness property. This Grothendieck topology restores a type
of “local connectedness” that is not available in the traditional theory of analytic manifolds over
non-archimedean fields as in [Se, Part II, Ch. III]. We refer the reader to [C3, 1.2.6-1.2.9, 1.3] for
an instructive analogy of Tate’s “admissibility” idea in the context of usual Euclidean geometry to
use a totally disconnected space to probe the topology of a richer ambient space.

Tate’s mild Grothendieck topology defines a category Shv(A) of sheaves of sets (the “Tate topos”)
in which we have a good theory of coherent modules over a certain structure sheaf OA (whose
existence is also a deep result of Tate). But there are deficiencies:

(i) For an extension K/k of non-archimedean fields, we have a map A→ AK := K⊗̂kA from a
k-affinoid algebra to a K-affinoid algebra but if [K : k] is infinite then typically there is no
evident map Sp(AK) → Sp(A). (The same issue comes up for schemes of finite type over
fields if we only use closed points.)

(ii) There are “not enough points” in Sp(A) in the sense that the stalk functors F  Fx =
lim−→x∈U F (U) for x ∈ Sp(A) are insufficient to detect if an abelian sheaf is nonzero, etc.

(iii) Admissibility is a tremendous pain when trying to carry out global constructions such as
moduli spaces not arising from algebraic geometry (e.g., representability of rigid-analytic
Picard and Hilbert functors in the proper setting without the presence of a relatively ample
line bundle, by trying to adapt M. Artin’s manifestly “pointwise” methods).

Berkovich overcame some of these defects by introducing an enhanced space M(A) that encodes
bounded k-algebra maps A → k′ to “all” non-archimedean fields k′/k. However, his global spaces
are not full subcategories of the category of locally ringed spaces. Huber’s solution involves an
enhanced space Spa(A) that (roughly speaking) encodes all “continuous” k-algebra maps A → K
to valued fields K whose value group Γ ⊃ |k×| is an arbitrary totally ordered abelian group (not
necessarily a subgroup of R>0). This has some attractive features:

(1) This is a locally ringed space (no “admissibility” or G-topology), and the underlying topo-
logical space is spectral (see Definition 1.15; this permits arguments with generic points and
specialization as in algebraic geometry).
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(2) It allows a wide class of “non-archimedean” rings in a useful way (for which real theorems
can be proved), so no ground field is required and one unifies rigid-analytic spaces over k
and appropriate formal schemes over Ok as part of a common geometric category.

(3) Although Spa(A) typically has many new closed points (unlike the passage from classical
algebraic varieties to the associated schemes), there are lots of rank-1 points (some closed,
some not closed), so non-archimedean fields continue to play an essential role in the general
theory. The “higher rank” points can also be closed. See Example 2.26 for an explicit
illustration of the various types of non-classical points.

(4) The category Shv(Spa(A)) of sheaves of sets on the spectral topological space Spa(A) coin-
cides with Tate’s original topos Shv(A) of sheaves of sets for the Tate topology on Sp(A);
it then follows from general facts about spectral spaces that stalks at points of Spa(A)
constitutes all “points” of the Tate topos. This theorem of Huber is never used in what
follows, but is quite beautiful and is perhaps psychologically reassuring.

Essentally everything we discuss in these notes beyond some basic facts about valuation rings is
due to Huber. For the reader’s convenience we will generally refer to seminar notes [C3] for omitted
details and proofs related to Huber’s work on adic spaces, and the original references to Huber’s
papers are given in [C3].

1.2. Review of valuation rings. We shall consider valuation rings with valuation written in
multiplicative notation (for harmony with conventions for non-archimedean fields).

Definition 1.3. A valuation ring is a domain R with fraction field K such that for each x ∈ K×
either x ∈ R or 1/x ∈ R. The value group is ΓR = K×/R×.

We make ΓR into a totally ordered abelian group by defining a mod R× ≤ b mod R× (for a, b ∈
K×) to mean a/b ∈ R. The natural map v : K → ΓR ∪ {0} (sending 0 to 0) then satisfies the
following properties: v(x) = 0 if and only if x = 0, v(K×) = ΓR, v(xy) = v(x)v(y) (where 0 · γ := 0
for all γ ∈ ΓR), and v(x+ y) ≤ max(v(x), v(y)).

Remark 1.4. We allow the possibility ΓR = 1 (i.e., R = K), and we emphasize that the value
group is an abstract totally ordered abelian group; it is not specified inside R>0 (in contrast with
Berkovich spaces, for which such an embedding is part of the data; in general such an embedding
might not exist at all).

We say that R (or ΓR) has rank 1 (or more accurately, rank ≤ 1 by allowing the case ΓR = 1)
when there exists a subgroup inclusion ΓR ↪→ R>0 that is order-preserving in both directions.

Exercise 1.5. For a totally ordered abelian group Γ 6= 1, show that Γ has rank 1 if and only if for
all γ < 1 in Γ, the powers {γn}n>0 constitute a cofinal subset of Γ.

Example 1.6. Here is an example of a rank-2 valuation ring that is worth studying very carefully,
as it will arise repeatedly later on as a prototype for many general situations. Let R be a valuation
ring with residue field κ, and suppose on κ there is specified a valuation with valuation ring R ⊂ κ.
For instance, we could have R = k((u))[[t]] with the t-adic valuation, κ = k((u)) on which there is
specified the u-adic valuation whose valuation ring is k[[u]].

Define the subring R′ ⊂ R to be the Cartesian product

R′ = R×κ R = {x ∈ R |x mod mR ∈ R}.

Note that mR ⊂ R′ with R′/mR = R, so in particular R′ is a valuation ring (check!).
Provided that R and R are not fields, we claim that such R′ is never a rank-1 valuation ring.

Indeed, we can choose a nonzero t ∈ mR and an element u ∈ R whose image in κ is a nonzero
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element of mR, so t/un ∈ R′ for all n > 0 (why?). Letting v′ be the valuation on R′, it follows
that v′(t) ≤ v′(u)n for all n > 0 yet v′(u) < 1. Thus, {v′(u)n}n>0 is not cofinal in ΓR′ , so R′ is not
rank-1.

In the toy case R = k((u))[[t]] as considered above, we have

ΓR′ ' aZ × bZ

with the lexicographical ordering where 0 < a, b < 1 (so v′(t) = (a, 1), v′(u) = (1, b)).

For any valued field (K, v) with value group Γ, we topologize K using the base of opens

B(a, γ) = {x ∈ K | v(x− a) < γ}
for a ∈ K and γ ∈ Γ. (We do not use the condition v(x − a) ≤ γ, since in the case Γ = {1} we
want to get the discrete rather than indiscrete topology.)

Here is a very important and perhaps initially surprising fact:

Exercise 1.7. Show that the topology on k((u))((t)) arising from the rank-1 valuation v = ordt
coincides with the topology defined by the rank-2 valuation v′.

That a higher-rank valuation on a field can define the same valuation topology as a rank-1
valuation on that field is initially disorienting but is a pervasive phenomenon in what follows. It
incorporates the possibility on an element x that {xn}n>0 may be “bounded” even if v(x) > 1;
e.g., 1 < v′(1/u)n ≤ v′(1/t) for all n > 0 in our toy example of a rank-2 valued field. Here is a
characteristization of such valuations (sometimes called mircobial):

Proposition 1.8. If v is a nontrivial valuation on a field K and R is its valuation ring, then the
following are equivalent:

(i) The v-topology on K coincides with that of a rank-1 valuation on K.
(ii) There exists a nonzero topologically nilpotent element in K.

(iii) The ring R admits a height-1 prime ideal.

The proof of this result requires some effort; see [C3, 9.1.3] for the details. In practice condition
(ii) will be easy to verify, and the implication “(ii) ⇒ (i)” will have useful consequences for the
abundance of “rank-1 points” in certain adic spaces.

Definition 1.9. A valuation on a commutative ring A is a pair (p, R) where p ∈ Spec(A) and R is
a valuation ring on the residue field κ(p); i.e., we are given a function v : A→ Γ∪ {0} for a totally
ordered abelian group Γ such that v(0) = 0, v(1) = 1, v(xy) = v(x)v(y), v(x+y) ≤ max(v(x), v(y)),
p := v−1(0) is prime, and Γ is generated by v(A− p).

Note that the pairs (p,Γ) with Γ = 1 correspond to the trivial valuations on the residue fields
of A at its prime ideals. Also, the definition of a valuation is set up to make the “value group”
intrinsic and minimal, thereby avoiding annoying issues of “equivalence” of valuations.

1.10. Valuation spectra. Let A be a commutative ring.

Definition 1.11. The valuation spectrum X = Spv(A) is the set of valuations on A, equipped with
a topology for which a base of opens is given by the subsets

X

(
f1, . . . , fn

s

)
:= {v ∈ X | v(f1), . . . , v(fn) ≤ v(s) 6= 0}.

(Note that we manually insert the condition v(s) 6= 0. Informally, the requirement on v is that
each fraction fj/s is v-integral.)
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For a point x ∈ X corresponding to a valuation v : A → Γ ∪ {0} on A, we often write |f(x)|
rather than v(f) (inspired by the classical rigid-analytic case) even though typically Γ is not of
rank 1 (and even when it is of rank 1, we do not choose an embedding of it into R>0).

Remark 1.12. Beware that since typically s is not a unit in the subring A[f1/s, . . . , fn/s] ⊂ A[1/s],
so it is typically killed by some valuations on this subring, the subset X({f1, . . . .fn}/s) ⊂ X is
usually not the image of Spv(A[f1/s, . . . , fn/s]). In particular, an assertion of quasi-compactness
for valuation spectra of arbitrary rings does not formally imply the same for such opens defining
the topology (though it will turn out that such subsets are quasi-compact: see Theorem 1.16).
This situation thereby differs from that of affine schemes, for which the basic affine opens are
topologically spectra of rings.

Example 1.13. If A = K is a field then Spv(A) recovers as a topological space the Riemann–Zariski
space RZ(K) with its base of open sets RZ(K, {a1, . . . , an}) consisting of those valuations v on K
whose associated valuation ring Rv contains each of finitely many specified elements a1, . . . , an. In
particular, the specialization relation v ∈ {w} in Spv(K) says exactly Rv ⊂ Rw inside K.

Exercise 1.14. Prove that the natural map Spv(A) → Spec(A) assigning to each v ∈ Spv(A) its
support pv := v−1(0) is continuous, and that the fiber over p is identified as a topological space (not
just as a set!) with RZ(κ(p)).

Using that this fiber has the subspace topology, and that specialization relations among points
can be expressed in terms of open subsets (whereas the formation of closure doesn’t generally
commute with intersecting with a fiber!), show that for two points v, w ∈ Spv(A) with the same

support p, we have v ∈ {w} if and only if Rv ⊂ Rw as subrings of κ(p).

Visualizing Spv(A) as lying “over” Spec(A), we refer to specialization relations in a fiber as
vertical specialization (or vertical generization). There is an entirely different specialization con-
struction (that we will not be discussing here) called horizontal specialization concerning v and
w in distinct fibers. It is very important for the proofs of some fundamental results on valuation
spectra that general specialization relations in Spv(A) can be systematically built from iterating
the operations of vertical and horizontal specialization in a controlled manner. This provides the
only tangible way to visualize what specialization looks like inside Spv(A) (substituting for how we
visualize specialization among points in Spec(A)). This is discussed in depth in [C3, Lecture 4].

The following notion is due to Hochster, motivated by topological properties of spectra of rings.

Definition 1.15. A topological space X is spectral if it is quasi-compact, quasi-separated (i.e., the
intersection of any two quasi-compact open subsets is quasi-compact), sober (i.e., each irreducible
closed subset has a unique generic point), and the quasi-compact open subsets constitute a base
for the topology.

Whereas the spectrality of Spec(A) for any commutative ring A is elementary, the analogue for
valuation spectra lies deeper:

Theorem 1.16 (Huber). The space Spv(A) is spectral and each open subset X({f1, . . . , fn}/s) is
quasi-compact.

Beware that the quasi-compactness of the subsets X({f1, . . . , fn}/s) is not a consequence of
quasi-compactness of valuation spectra, due to the phenomenon in Remark 1.12. The proof of
Theorem 1.16 is addressed in [C3, 3.4], so here we now just sketch the idea for the proof of the
quasi-compactness assertions. (The sobriety property is much harder to prove.)

One can express the axioms on valuations in terms of properties satisfied by the condition
“v(a) ≤ v(s) 6= 0” for varying (a, s) ∈ A × A, thereby defining a special class of relations R on
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A × A. Viewing such an R as a point in the power set ℘(A × A) = {0, 1}A×A, when this power
set is made into a compact Hausdorff space (via the product topology for the discrete topology on
{0, 1}) it turns out that the set (ignoring its topology!) X = Spv(A) is a closed subset of ℘(A×A)
in which its subsets X({f1, . . . , fn}/s) are clopen for that ambient compact Hausdorff topology.
From this one immediately gets the asserted quasi-compactness conditions for the original topology
on X (which has nothing to do with its topology inherited from ℘(A×A)!).

Definition 1.17. A topological ring A is non-archimedean is 0 admits a base of open neighborhoods
that are additive subgroups.

For later considerations with tensor products and localizations we do not impose any Hausdorff
(or completeness) conditions in the preceding definition. Next, we want to define “continuity” for
a valuation v : A→ Γ ∪ {0} when A is a topological ring that is non-archimedean.

Definition 1.18. Let A be a non-archimedean ring. A valuation v : A→ Γ ∪ {0} is continuous if
for each a ∈ A and γ ∈ Γ the subset

{x ∈ A | v(x− a) < γ}

is open. (It is equivalent to consider just a = 0, since A is a topological group when considered
additively.)

Denote by Cont(A) ⊂ Spv(A) the subset of such continuous v, and equip this subset with the
subspace topology.

Whereas Theorem 1.16 is for arbitrary commutative rings, what we really need is an analogous
such result for Cont(A) when A belongs to a suitable class of non-archimedean rings. We now turn
to the definition of that class of rings.

1.19. Huber rings and Tate rings.

Definition 1.20. A topological ring A is Huber (originally: “f-adic”, where “f” refers to “finite”) if
there exists an open subring A0 ⊂ A (called a “ring of definition”) on which the topology is I-adic
for a finitely generated ideal I of A0.

We do not require that A0 is I-adically separated or complete. (This is technically convenient
for later considerations with tensor products and rings of fractions.) Note that from the definition
it follows that any Huber ring is non-archimedean.

Here are some examples of Huber rings (the first and third of which unify rigid-analytic geometry
and noetherian formal schemes into a common framework):

(1) For a k-affinoid algebra A ' k〈t1, . . . , tn〉/J , we can take A0 to be the image of Ok〈t1, . . . , tn〉
and I = $A0 where $ ∈ k× is a pseudo-uniformizer: 0 < |$| < 1.

(2) As a very special case, we can take A to be k, A0 = Ok, and I = ($); in general we cannot
take I to be mOk

since for algebraically closed k this maximal ideal is not finitely generated
and is even equal to its own square (so its adic topology on Ok does not give the valuation
topology).

(3) A = A0 a noetherian ring with topology defined by an ideal.
(4) If B is a Huber ring and B0 is a ring of definition with I0 ⊂ B0 a finitely generated ideal

defining its topology then we get another Huber ring via the relative Tate algebras

A = B〈t1, . . . , tn〉 = {
∑

bJ t
J | bJ → 0 as ||J || → ∞}

with ring of definition A0 gives by the I0-adic completion B0{t1, . . . , tn} of B0[t1, . . . , tn].
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We emphasize that the choice of the pair (A0, I) is very flexible, and is not special in any way
at all. (See [C3, 5.4.10, 5.4.13] for illustrations of this flexibility.)

Definition 1.21. A topological ring A is Tate if it is Huber and contains a topologically nilpotent
unit $ (called a pseudo-uniformizer).

Obviously if A → B is a continuous map of Huber rings and A is Tate then so is B. For any
Tate ring A and ring of definition A0, by replacing $ with $N for large enough N we can arrange
that $ ∈ A0. It is then easy to check that A = A0[1/$]. Typically in non-Tate cases one cannot
recover the topology on A from the one on A0 by a simple localization operation.

Informally, Tate rings permit versions of arguments for Banach spaces whereas general Huber
rings do not. For example, we will see next that “boundedness” can be defined in the setting of
Huber rings but that a continuous map between Huber rings can fail to carry bounded sets to
bounded sets (whereas this works well for Tate rings).

2. Rings of fractions, adic Nullstellensatz, and rational domains

2.1. Boundedness. Let A be a non-archimedean ring (not necessarily Hausdorff nor complete).
For any two subsets S, S′ ⊂ A, we define S ·S′ to be the set of finite sums of products ss′ for s ∈ S
and s′ ∈ S′.

Definition 2.2. A subset Σ ⊂ A is bounded if for all open neighborhoods U of 0 there exists an
open neighborhood V of 0 such that V ·Σ ⊂ U . (Since one can restrict to a cofinal system of such
U that are additive subgroups, it is the same to consider just individual products v · σ rather than
finite sums of such.)

It is a simple exercise to check that if Σ1,Σ2 are bounded subsets of A then so is Σ1 ·Σ2 (the set
of finite sums of pairwise products). We say that Σ is power-bounded if the set {s1 · · · sn | sj ∈ Σ}
of all products of finitely many elements of Σ is bounded in A; in the special case of a singleton
set Σ = {a} this is the property that {a, a2, . . . } is bounded, in which case we say that a is
power-bounded. Using the binomial theorem, it is elementary to check that the set

A0 := {a ∈ A | a is power-bounded}
is a subring of A.

Example 2.3. If A is a reduced k-affinoid algebra then A0 is even bounded in A because || · ||sup is a
norm that defines the topology on A [BGR, 6.2.4/1].

Example 2.4. If A = k[ε] is the algebra of dual numbers over k then A0 = Ok + kε is not bounded.
Thus, reducedness is essential to the boundedness of ring of power-bounded elements in the pre-
ceding example.

Example 2.5. Let (K, v) be a valued field whose valuation topology coincides with that defined by
a rank-1 valuation w on K; we have seen examples in which v is a higher-rank valuation. In such
cases K0 defined purely in terms of the common topology of v and w coincides with the valuation
ring of w and not the valuation ring for v (except when v = w).

Now assume that A is a Huber ring, and let (A0, I) be a couple of definition (i.e., a ring of
definition and a finitely generated ideal of A0 defining its topology). The proof of the following
lemma is left as an exercise:

Lemma 2.6. All open subrings of A are Huber, and an open subring of A is a ring of definition if
and only if it is bounded.
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Arguing as for Banach spaces, if f : A→ B is a continuous map between Tate rings then f carries
bounded sets onto bounded sets. This fails for “Tate” relaxed to “Huber” (e.g., take B to be a
non-archimedean field and A the same underlying field with the discrete topology), but remains
correct when f is either a surjective topological quotient map or expresses B as the completion of
A (a notion to be defined shortly).

2.7. Operations on Huber rings. Tensor products can be considered for Huber rings, but this
involves some topological subtleties (related to the fact that the “generic fiber” of Spf(Zp[[T ]]) over
Sp(Qp) should be the open unit disc that is not affinoid). Thus, we will discuss tensor products
here only in the Tate case, as in the following rather easy result:

Proposition 2.8. Let C be a Tate ring and $ ∈ C a pseudo-uniformizer (i.e., topologically nilpo-
tent unit). Let C ⇒ A,B be continuous maps to Huber rings (so A and B are Tate), and let
C0, A0, B0 be compatible rings of definition such that $ ∈ C0 (as can always be arranged). Then
A ⊗C B is a Tate ring when using im(A0 ×C0 B0) as a ring of definition equipped with its $-adic
topology, and it satisfies the expected universal property relative to continuous maps into non-
archimedean target rings.

The universal property in the preceding result shows that the topological ring structure on A⊗CB
is independent of the auxiliary choices of $ and compatible rings of definition.

Next, we turn to an important construction involving rings of fractions for Huber rings, as a
warm-up to the construction of “rational domains” for Huber rings (generalizing the notion of
rational domain in rigid-analytic geometry). Let A be a Huber ring, and choose a finite subset
T := {f1, . . . , fn} ⊂ A generating an open ideal T · A ⊂ A. (If A is Tate then the only open ideal
is the unit ideal – why? – so this says T · A = (1) in such cases.) For s ∈ A, define A(T/s) to be
the ring A[1/s] equipped with ring of definition A0[T/s] := A0[f1/s, . . . , fn/s] ⊂ A[1/s] equipped
with the I-adic topology, where (A0, I) is a couple of definition for A. The following result shows
that A(T/s) as a topological ring structure on A[1/s] is independent of the choice of (A0, I) as just
used:

Theorem 2.9. The topological ring A(T/s) is Huber and has the universal property that the natural
continuous map A → A(T/s) is initial among continuous maps f : A → B to non-archimedean
rings such that f(s) ∈ B× and f(t)/f(s) ∈ B0 for all t ∈ T .

Remark 2.10. Despite the simple formulation of the preceding theorem, the proof requires some real
work: it uses crucially that openness of T ·A implies openness of T ·U for any open neighborhood
U of 0, as shown in [C3, 6.3.5], and uses topological considerations with relative Tate algebras that
we prefer not to get into here (see [C3, §6.3] for further details).

The last general operation we introduce, albeit briefly, is completion. Letting (A0, I) be a couple
of definition for a Huber ring A, the completion is

Â = lim←−A/I
n

(where the quotients A/In are not rings since In is merely an additive subgroup of A and generally
not an ideal of A, but the inverse limit nonetheless has a well-defined ring structure in an evident
manner since In → 0 in A). This is a Hausdorff topological ring in which the I-adic completion

Â0 is an open subring having the I-adic topology that is separated and complete (see the Stacks
Project for good properties of completion of general rings with respect to finitely generated ideals).

This makes Â a Huber ring characterized by a universal property (so it is independent of the

choice of (A0, I)), and Â0 ⊗A0 A → Â is an isomorphism (see [C3, §5.5] for further details). In
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particular, combining our “rational domain” operation on Huber rings with the completion as just
discussed, we see that

A〈T/s〉 := A(T/s)∧

is a Huber ring with a universal property similar to that of rational domains in rigid-analytic
geometry.

2.11. Spa revisited. Let A be a Huber ring, and A00 ⊂ A0 the open ideal of topological nilpotents
in A0. For any subset Σ ⊂ A define

Spa(A,Σ) := {v ∈ Cont(A) | v(a) ≤ 1 for all a ∈ Σ} = Spa(A,Z[Σ +A00]∼);

where Z[Σ + A00]∼ denotes the integral closure in A of the open subring Z[Σ + A00]. Note that
this integral closure is an open and integrally closed subring of A. (Here and below we slightly
abuse terminology and say “integrally closed subring of A” to mean a subring R of A such that
all elements of A integral over R belond to R; this is not to be confused with any more intrinsic
notion of “integral closedness” for R without reference to A, as one might imagine at least when A
is a domain.)

Theorem 2.12. The space Cont(A) is spectral for the subspace topology from Spv(A).

See [C3, 8.4.1, §9] for some discussion of the proof of this result. It rests on a lot of study of
specialization in Spv(A) and the (highly non-obvious) “nearly algebraic” formula

(1) Cont(A) = {v ∈ Spv(A,A00 ·A) | v(a) < 1 for all a ∈ A00}

proved in [C3, 9.3.1] (the right side involves the topology on A solely through the specification of
the ideal A00 via a technical but purely algebraic construction Spv(R, J) ⊂ Spv(R) defined in [C3,
§9.2] for any commutative ring R and ideal J whose radical coincides with the radical of a finitely
generated ideal, using convexity conditions on valuations).

A consequence of the method of proof of Theorem 2.12 is:

Corollary 2.13. For a Huber ring A, the space Spa(A,Σ) is spectral for any subset Σ ⊂ A. In
particular, Spa(A,A+) is spectral for any open and integrally closed subring of A.

The formula (1) also underlies the proof of the following fact in [C3, 11.4.1] governing the
structure of rational domains in the general theory:

Theorem 2.14. Let A+ be an open and integrally closed subring of a Huber ring A, and let X
denote the spectral space Spa(A,A+). For a finite subset T ⊂ A generating an open ideal in A and
any s ∈ A, the open subset X(T/s) = {v ∈ X | , v(t) ≤ v(s) 6= 0 for all t ∈ T} is quasi-compact and
the natural map

(2) Spa(A(T/s), A+[T/s])→ X

is a homeomorphism onto X(T/s). In particular, each such X(T/s) is spectral.
Moreover, a subset W ⊂ X(T/s) is a “rational domain” in X with respect to A (i.e., W =

X(T ′/s′) for s′ ∈ A and finite T ′ ⊂ A′ generating an open ideal) if and only if it is a “rational
domain” in X(T/s) with respect to A(T/s).

Note the contrast of the image of (2) with the failure of the analogue in Remark 1.12 for valuation
spectra and general pairs (T, s) (in the absence of any “open ideal” condition on T ).
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Remark 2.15. Beware that the quasi-compactness of

(Spa(A,A+))(T/s) = Spa(A,A+) ∩ (Spv(A))(T/s)

is only being asserted when T · A is an open ideal. In general although (Spv(A))(T/s) is quasi-
compact for any s ∈ A and finite subset T ⊂ A (Theorem 1.16), there is no reason that its
intersection with Spa(A,A+) should be quasi-compact with general finite subsets T ⊂ A.

Indeed, such quasi-compactness can fail, even for T = {s}. That is, the locus in X = Spa(A,A+)
where v(s) 6= 0 for a general s ∈ A is generally not quasi-compact. For example, if A is Tate with a
pseudo-uniformizer $ then the condition v(s) 6= 0 is equivalent to the condition v(s) ≥ v($n) for
some n ≥ 1 (which forces v(s) 6= 0 since v($) must be nonzero due to $ being a unit in A). Thus,
X(s/s) is the union of the (quasi-compact!) rational domains X($n/s) but it is typically not the
union of finitely many of these (so X(s/s) is then not quasi-compact); e.g., this occurs for A an
affinoid algebra over a non-archimedean field and s a nonzero nonunit in A.

It cannot be overemphasized how important is the robustness of the “rational domain” concept
inside X versus X(T/s) as at the end of Theorem 2.14; this is used all the time without comment,
and its proof is very hard (for the implication that rational domains in X(T/s) are also rational in
X, which comes down to showing that one can slightly modify the parameters describing a rational
domain without affecting the actual subset defined inside Spa(A,A+)).

Recall that by definition a base for the topology of a valuation spectrum Y = Spv(R) for any ring
R is given by (non-trivially quasi-compact) open subsets Y (T/s) for s ∈ R and finite subsets T ⊂ R.
An important and highly non-trivial refinement for a Huber pair (A,A+) and the corresponding
adic spectrum X = Spa(A,A+) is that a base for its topology is given by those subsets X(T/s) for
which the ideal T ·A is open in the topology of the non-archimedean ring A. In other words:

Theorem 2.16. For any pair (A,A+) as in Theorem 2.14, the rational domains are a base for the
topology of the spectral space Spa(A,A+).

This is not an easy result. Via (1), it is deduced from a purely algebraic analogue in [C3,
9.2.5(2)] giving a refined base for the topology of the subset Spv(R, J) ⊂ Spv(R) (mentioned just
below Theorem 2.16) for any commutative ring R and ideal J ⊂ R whose radical coincides with
the radical of a finitely generated ideal.

Remark 2.17. We have noted that the spectrality of X = Spa(A,A+) for Huber pairs (A,A+) and so
also of its rational domains X(T/s) = Spa(A〈T/s〉, A〈T/s〉+) ultimately rests on the spectrality of
general valuation spectra Spv(R) for commutative rings R and of the subspace Cont(A) ⊂ Spv(A)
of continuous valuations for any Huber ring A. The spectrality of these basic building blocks of
adic spaces (see Definition 3.12) is an essential difference from Berkovich spaces, whose affinoid
building blocks are compact Hausdorff spaces (which are essentially never spectral). The overall
proof of the spectrality of adic spectra is very long, much more so than quasi-compactness results for
Zariski spectra of rings and for Berkovich spectra of classical affinoid algebras over non-archimedean
fields (which is ultimately a short argument using Tychonoff’s theorem). Hence, one may naturally
wonder if it is worth the effort. Or more concretely: of what use is the spectral property?

There are two essential features of spectrality: the abundant supply of quasi-compact open
subspaces, and the availability of specialization arguments (due to the property of being sober,
which ensures that distinct points have distinct closures). The utility of such notions is very familiar
from experience with schemes, including the usefulness of constructibility as a midway point towards
openness and closedness results (since one can characterize when a locally constructible subset of
a scheme is open or closed in terms of specialization relations). Moreover, in the development of
étale cohomology one uses specialization techniques all over the place when setting up the theory.
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Consequently, it is reasonable to expect (and indeed turns out to be the case) that the spectral
property of Spa(A,A+) and its rational subsets should be equally useful in the study of adic spaces.
However, whereas one can work with schemes without being conscious of the notion of spectral space
(because the Zariski topology of the spectrum of a ring is so closely related to calculations in the
ring), for topological arguments with adic spectra Spa(A,A+) (whose closed sets are not built from
ideals in A, and whose “coordinate rings” for rational domains involve a completion operation) one
needs the general theory of spectral spaces in order to get any non-trivial control over the topology.
Once that tool is in hand, we get several benefits as follows.

Firstly, as we know from experience with spectra of rings, the ubiquity of quasi-compact open
subsets is a powerful substitute for intuition with locally compact Hausdorff spaces. In particular,
when aiming to bootstrap from calculations with stalks of the structure sheaf to global properties
of a space, it is extremely useful that one has both a base of quasi-compact open subsets as well
as a rather explicit such base (namely, the rational domains) in the affinoid setting. In effect, this
substitutes for the finiteness property that Tate inserted manually into his “admissible topology”,
but is much more convenient because it involves an actual topological space (not a Grothendieck
topology); this provides the ability to make pointwise arguments, which is only available in Tate’s
framework in very special circumstances (such as with coherent sheaves, which are too limited for
developing an adequate theory of étale cohomology for non-archimedean geometry).

Furthermore, the property of being sober underlies a well-behaved theory of constructible sub-
sets (Boolean combinations of quasi-compact open subsets) with which one can describe certain
closures in terms of pointwise specialization relations. This is reminiscent of using stability under
specialization to characterize closedness of a constructible subset of a noetherian scheme. One
of Huber’s primary motivations when setting up his theory of adic spaces (and also an essential
tool in Scholze’s work with perfectoid spaces) was to create a version of étale cohomology for
rigid-analytic spaces. It is hopeless to create a theory of étale cohomology directly with Tate’s
rigid-analytic spaces, much as one can’t make étale cohomology of classical algebraic varieties: one
must use the associated schemes because specialization considerations pervade the proofs of all of
the serious theorems in étale cohomology, and those arguments can’t be conveniently expressed
in the language of classical varieties (with only closed points). One should view the adic space
associated to a classical rigid-analytic space (see Example 3.15) as akin to the scheme associated to
a classical algebraic variety, and so the pervasive role of specialization arguments in work with étale
cohomology for schemes is substituted by the good behavior of specialization relations in spectral
spaces when developing étale cohomology for adic spaces.

(In Berkovich setting there are no specialization arguments because his spaces are locally com-
pact. To overcome this in his development of étale cohomology for Berkovich spaces, he uses many
arguments with curve fibrations and the nice topological features of locally compact Hausdorff
spaces. There is however a price to pay: in addition to the local compactness of the underlying
topological space, Berkovich needs to use a mild Grothendieck topology for considerations with
coherent sheaves, somewhat reminiscent of Tate’s admissible topology. This makes certain aspects
of sheaf theory on Berkovich spaces somewhat subtle, and forces the notions of étale and smooth
morphism in the Berkovich setting to be somewhat more restrictive than for adic spaces attached
to rigid-analytic spaces. Of course, with experience one can get acclimated to these things just as
one does with the admissible topology for rigid-analytic spaces.)

A companion to the notion of spectral space is:

Definition 2.18. A spectral map f : X → Y between spectral spaces: is a continuous map such
that for every quasi-compact open subset U ⊂ Y the open subset f−1(U) of X is quasi-compact.



A BRIEF INTODUCTION TO ADIC SPACES 11

It is obvious that for any map of commutative rings A → B the associated map Spec(B) →
Spec(A) is spectral. However, if f : (A,A+) → (B,B+) is a map of Huber pairs (always required
to be continuous on underlying topological rings) then although the induced map Spa(f) : X =
Spa(B,B+) → Spa(A,A+) = Y is trivially continuous (since Spv(f) is trivially continuous and
even spectral, as the preimage of Spv(A)(T/s) is Spv(B)(f(T )/f(s))) it is typically not spectral.

The issue is that when working with rational domains in Y , if s ∈ A is an element and T ⊂ A
is a finite subset such that the ideal T · A is open in A then there is no reason that the ideal
f(T ) · B in B is open. Indeed, this fails for examples arising from the setting of “non-adic” maps
of noetherian formal schemes (i.e., maps for which an ideal of definition does not pull back to an
ideal of definition):

Example 2.19. Let A and B be noetherian rings equipped with topologies defined by respective
ideals I ⊂ A and J ⊂ B. Taking each ring to be its own ring of definition, we get Huber pairs (A,A)
and (B,B). Suppose f : A→ B is a ring homomorphism such that f(I) ⊂ J , so f : (A,A)→ (B,B)
is a (continuous!) map of Huber pairs.

For a finite set T of generators of I (so T ·A = I is an open ideal of A), the ideal f(T ) ·B = IB
usually does not contain a power of J and so is not open. Thus, for s ∈ A the Spa(f)-preimage of
the rational domain Spa(A,A)(T/s) is the open subset Spa(B,B)(f(T )/f(s)) that has no reason
to be a rational domain and in fact is usually not even quasi-compact.

A situation where such quasi-compactness fails is A = B = R[[t]] as rings for a discrete valuation
ring R, I = 0, J = tB, f is the identity map, T = {0}, and s = t.

There are related continuous maps of more serious interest that also fail to be spectral:

Example 2.20. For any Huber pair (A,A+), consider the “support map” X := Spa(A,A+) →
Spec(A) that assigns to each v its kernel pv = ker(v) = {a ∈ A | v(a) = 0}. This is continuous since
the preimage of Spec(As) is the subset {v ∈ X | v(s) 6= 0} = X(s/s) of X that is certainly open
but is typically not quasi-compact, as we noted near the end of Remark 2.15.

For any Huber pair (A,A+) and x ∈ Spa(A,A+), the associated map A → k(x) to a complete
valued fields carries A+ into its valuation ring Rx; i.e., we have an associated map φx : A+ → Rx.
In the Tate setting, so A00 ⊂ A+ since A+ is open and integrally closed, we have A = A+[1/$] for
a pseudo-uniformizer $ and necessarily φx carries $ to a pseudo-uniformizer of Rx (as necessarily
0 < v($) < 1, since $ ∈ A× ∩ A00 with v ∈ Cont(A) by definition of Spa(A,A+)). Thus, we can
interpret Example 2.20 as associating to each x the image of the generic point ηx under

Spec(φx) : Spec(Rx)→ Spec(A+)

(carrying ηx into the open subscheme Spec(A) = {z ∈ Spec(A+) | z($) 6= 0} since |$(x)| 6= 0).
At the opposite extreme, we can consider the image sp(x) of the closed point under Spec(φx).

This does not land in the open subscheme Spec(A) since φx($) belongs to the maximal ideal
of Rx due to the condition |$(x)| < 1. In view of the Tate condition, the closed complement
Spec(A+)− Spec(A) is precisely

Spec(A+/($)) = Spec(A+/A00) = Spf(A+),

the underlying topological space of open prime ideals of A+. Here is an interesting property of this
construction:

Proposition 2.21. For a Tate pair (A,A+), the preceding “specialization map” of spectral spaces

sp : X = Spa(A,A+)→ Spec(A/A00) = Spf(A+)

is continuous and in fact spectral.
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Proof. We just have to check that for any a ∈ A+ representing an element a ∈ A+/A00, the preimage
sp−1(D(a)) is open and quasi-compact. In fact, we claim this preimage is even a rational domain:
it is X(1/a). To see this, we just observe that for any x ∈ X, by definition sp(x) corresponds to
the pullback of the maximal ideal of Rx under φx : A+ → Rx, so x ∈ sp−1(D(a)) if and only if the
associated map from A+/A00 into the residue field of Rx doesn’t kill a. It is equivalent to say that
the image φx(a) ∈ Rx is a unit, or in other words |a(x)| = 1. But we know that always |a(x)| ≤ 1
(since A → k(x) carries A+ into the valuation ring Rx because x ∈ Spa(A,A+)), so the condition
|a(x)| = 1 is the same as the condition |1(x)| ≤ |a(x)| 6= 0, which says exactly that x ∈ X(1/a). �

Via the natural identification of sets Cont(A) = Cont(Â), one also shows the following (see [C3,
11.5.1] for details):

Theorem 2.22. The natural map Spa(Â, Â+) → Spa(A,A+) is a homeomorphism respecting the
notion of rational domain on each side.

Remark 2.23. Typically the open subring Â+ ⊂ Â is not integrally closed. Its integral closure is

denoted as Â+ (abusing notation, since it depends on A and A+), so we could also express the

preceding theorem using Spa(Â, Â+) on the left.

We also have an evident homeomorphism Spa(A/{0}, A+/{0}) ' Spa(A,A+) respecting the

notion of rational domain on both sides, and A/{0} is a Hausdorff Huber ring. Using his brilliant
skill with valuation theory, Huber proved the following result highlighting for the first time in the
development of the general theory why one should limit attention to the case A+ ⊂ A0:

Theorem 2.24. Assume A is Hausdorff and A+ ⊂ A0. Then Spa(A,A+) is empty if and only if
A = 0.

The proof of this important theorem is given as [C3, 11.6.1]. The idea of the proof of the
interesting implication “⇒” is to use that A+ ·A00 ⊂ A00 (as A+ ⊂ A0!) to deduce from emptiness
of Spa(A,A+) that In = In+1 for sufficiently large n. But then the Hausdorff condition on A forces
the terminal power In for large n to vanish, so the topology on A is discrete and hence we may
easily conclude.

Further mastery with valuation theory was used by Huber to prove:

Theorem 2.25 (adic Nullstellensatz). For any open and integrally closed subring A+ ⊂ A, we
have

A+ = {a ∈ A | v(a) ≤ 1 for all v ∈ Spa(A,A+)}.

The merit of allowing non-complete A is that it permits us to compute Spa(Â, Â+) by using
automorphisms of A that might not pass to the completion. For example, if we want to describe
the adic closed unit disc

Spa(k〈t〉, k0〈t〉) = Spa(k[t], k0[t]) ⊂ Cont(k[t])

then we can applying automorphisms of k[t] which may not even preserve k0[t]; this really is useful
when determining all points of that disc for algebraically closed k. Likewise, one builds some
perfectoid algebras as completions of certain direct limits A = lim−→Ai, so being able to work with

lim−→Ai (rather than only a completion thereof) is convenient for some calculations.

Example 2.26. Let’s now describe all points of Dk := Spa(k〈t〉, k0〈t〉) when k is algebraically closed.
Our interest is to go beyond the classical points (“type 1”), so we focus on those v whose support
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is (0). These fall into 4 classes, three of rank 1 (“types 2, 3, 4”) and a fourth class (“type 5”) of
rank 2. The justification of the following as an exhaustive list is given in [C3, 11.2–11.3].

Points of Spa(k〈t〉, k0〈t〉) lie over Spa(k, k0) that is a 1-point space (as k0 is a rank-1 valuation
ring). In other words, the rank-1 value group k×/(k0)× (which we may denote as |k×| if we non-
canonically choose an embedding of it into R>0) naturally lies inside the value group Γv for every
v ∈ Dk; if this rank-1 group exhausts Γv then we may say informally that v has value group equal
to v(k×)

First consider non-classical v of rank 1, and let κ denote the residue field of k0. The “type 2”
class consists of v for which Γv = v(k×) and κ(v) 6= κ (i.e., same value group as the unique point
in Spa(k, k0), but bigger residue field). These v have the form

vc,r(f) = sup
|t−c|≤r∈|k×|

|f(t)|,

(note the requirement r ∈ |k×|) and κ(v) ' κ(t).
On the other hand, the rank-1 cases with Γv 6= v(k×) (and κ(v) 6= κ) are called “type 3” and are

given by vc,r with r ∈ R>0 − |k×|. In these cases, Γv = 〈|k×|, r〉 ⊂ R>0.
The remaining rank-1 possibility, called “type 4”, occurs if and only if k is not spherically

complete, and is the situation with k(t)v/k an immediate extension (i.e., same residue field, same
value group). These are given by infi || · ||Di for a descending family of closed discs Di with ∩iDi = ∅.
(In [C3, 11.3.4] there is given such a {Di} for k = Cp.)

Finally, we come to type 5. These are rank-2 points arising from type-2 points via (continuous)
specialization: the residue field κ(t) at a type-2 point vc,r admits as its non-trivial valuations trivial
on κ precisely the non-generic points w ∈ RZ(κ(t)/κ) = P1

κ (avoiding w = ∞ when |c| = 1). This
gives rise to a rank-2 valuation on k(t) by exactly the same process as in Example 1.6!

3. Sheaves, adic spaces and points

Due to Theorem 2.24, we now assume always that A+ ⊂ A0 for any Huber pair (A,A+) under
consideration; many results below would need to be reformulated if this implicit hypothesis were
not imposed throughout.

3.1. Structure sheaf. Let (A,A+) be a Huber pair (with A+ ⊂ A0 as always now), and define
X = Spa(A,A+). For s ∈ A and a finite subset T ⊂ A such that the ideal T · A is open in A, let
W = X(T/s). Consider the Huber pair

OA(W ) = A〈T/s〉, O+
A (W ) = (A+[T/s]∧)∼ ⊂ A〈T/s〉;

the latter ring is by definition the integral closure of the open completed subring A+[T/s]∧ ⊂
A〈T/s〉, and is denoted A〈T/s〉+ (in accordance with Remark 2.23). For instance, we want to

define OA(X) to be Â (not A in general!). Strictly speaking we should write OA,A+ , but that would
be too cumbersome.

There immediately arises a question: does this pair depend only on the subset W ⊂ X and not
on the specific pair (s, T ) used to build W? We will address this affirmatively soon via a universal
mapping property solely in terms of W ⊂ X without reference to s and T . Before we take up this
issue, we give an example to illustrate how the affirmative answer would break down if completions
were not part of the construction:

Example 3.2. Consider X = Dk := Spa(k[t], k0[t]). Note that X = X(1/(1 + $t)) for $ ∈ k
satisfying 0 < |$| < 1, but k[t][1/(1 + $t)] 6= k[t]! The key issue here is that 1 + $t is nowhere-
vanishing on X but is not a unit in k[t].
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The preceding example highlights the importance of completeness in the following Key Lemma:

Lemma 3.3. Let (B,B+) be a Huber pair with B separated and complete for its topology; i.e.,

B = B̂. Any b ∈ B non-vanishing on Spa(B,B+) is a unit in B.

The basic idea of the proof of the lemma is as follows. By completeness, if (B0, I) is a couple
of definition for B then 1 + I ⊂ B×. Hence, the subset B× ⊂ B is open. It follows that if an
element of B is arbitrarily close to units then it must be a unit. It is therefore enough to prove
that the closed ideal J := bB ⊂ B exhausts B. But B/J is Hausdorff since J is closed, and by
the hypotheses on b we see that Spa(B/J,B+/(B+ ∩ J)) is empty. Since B+/(B+ ∩ J) ⊂ (B/J)0

(why?), it follows from Theorem 2.24 that B/J = 0, concluding the proof of the lemma.
Inspired by the homeomorphism (2) in Theorem 2.14, both Lemma 3.3 and the adic Nullstellen-

satz underlie the proof of a universal property for the pair (A〈T/s〉, A〈T/s〉+) solely in terms of
the subset W := X(T/s) ⊂ X without reference to s and T :

Proposition 3.4. For any Huber pair (B,B+) with B separated and complete, and any continuous
map of Huber pairs f : (A,A+)→ (B,B+), Spa(f) lands inside W := X(T/s) if and only if there
exists a (necessarily unique) continuous factorization of f as:

(A,A+)→ (A〈T/s〉, A〈T/s〉+)→ (B,B+).

This universal property provides canonical (and transitive) restriction maps OA(W )→ OA(W ′)
for rational subsets W,W ′ ⊂ X satisfying W ′ ⊂ W , and likewise for O+

A . In this way OA and O+
A

constitute presheaves on the basis of rational domains in X, and we assemble them to presheaves
on X itself via the recipes

OA(U) = lim←−
W⊂U

OA(W ), O+
A (U) = lim←−

W⊂U
O+
A (W ).

To avoid total confusion in practice, we also need:

Proposition 3.5. For W = X(T/s) ⊂ X and W ′ ⊂ W a subset that is rational with respect to
the Huber pair (A〈T/s〉, A〈T/s〉+), necessarily W ′ is rational as a subset of X (i.e., with respect to
(A,A+)).

This non-trivial result [H, Lemma 1.5(ii)] allows us to work locally when studying properties of
OA and O+

A (i.e., to rename (A〈T/s〉, A〈T/s〉+) as (A,A+)). In particular, combining this with
Lemma 3.3 and the finite generatedness of I for any couple of definition (A0, I) one obtains:

Corollary 3.6. The stalk OA,x is a local ring for any x ∈ X.

By design, for any x ∈ X we have a canonically associated valuation vx : OA,x � κ(x)→ Γx∪{0}
(also denoted f 7→ |f(x)|) and the valuation ring κ(x)+ ⊂ κ(x) is identified with O+

A,x/mx; more
specifically, the diagram of rings

(3) O+
A,x

//

��

OA,x

��
κ(x)+ // κ(x)

is Cartesian. (See [C3, 14.3.2] for further details on this.)
These valuations on the local stalks are used in the following important application of the adic

Nullstellensatz over rational domains in X:
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Proposition 3.7. For any open subset U ⊂ X,

O+
A (U) = {f ∈ OA(U) | vx(f) ≤ 1 for all x ∈ U}.

We conclude that if OA is a sheaf then so is O+
A . But is OA a sheaf? We say that (A,A+) is

sheafy if OA is a sheaf on X = Spa(A,A+). The property of sheafyness really concerns covers of
rational domains by finitely many rational domains (without confusion, due to Proposition 3.5),
and there are cases where it fails. Huber gave some useful sufficient conditions for an affirmative
answer:

Theorem 3.8. The presheaf OA is a sheaf if either Â has a noetherian ring of definition or if
A〈t1, . . . , tn〉 is noetherian for all n > 0.

The conditions in this Theorem only involves hypotheses on A rather than also A+ (though the
space X rests on A+), and is applicable in particular to those A arising from noetherian formal
schemes or rigid-analytic spaces. The noetherian conditions essentially always fail to apply to the
Huber pairs arising for perfectoid spaces, so another sufficient criterion is needed, at least when A
is Tate. This is provided by the following main result in [BV] (and whose proof is sketched in [C3,
13.6]):

Theorem 3.9 (Buzzard–Verberkmoes). If A is Tate and “stably uniform” (i.e., OA(W )0 is bounded
in OA(W ) for all rational domains W ⊂ Spa(A,A+)) then OA is a sheaf.

In such cases, Hi(W,OX) = 0 for all i > 0 and rational domains W ⊂ X.

The proof of this result adapts Tate’s ideas from the rigid-analytic case, and [BV, Example 4.6]
provides an A that is uniform (i.e., A0 is bounded in A) yet for which OA is not a sheaf! Thus,
the “stably uniform” condition really cannot be relaxed too much. A somewhat easier task is to
give a uniform Tate ring A that is not stably uniform (but for which the sheaf property is not
determined): [BV, Example 4.5] provides such an A (simpler than [BV, Example 4.6]).

The importance of Theorem 3.9 for us will that perfectoid rings, which are complete, Tate, and
uniform by definition, are stably uniform. More specifically, it will be a non-trivial theorem that
if A is perfectoid then the completed coordinate ring A〈T/s〉 = OA(W ) for any rational domain
W ⊂ Spa(A,A+) is again perfectoid (and in particular: uniform).

3.10. Adic spaces and points. Let V denote the category of triples (X,OX , {vx}x∈X) for (X,OX)
a topologically locally ringed space and vx a valuation on the residue field κ(x) of the local ring
OX,x for each x ∈ X. Morphisms are defined in the evident manner. Proposition 3.7 motivates:

Definition 3.11. For each such triple (X,OX , {vx}x∈X) and open subset U ⊂ X, define

O+
X(U) = {f ∈ OX(U) | vx(f) ≤ 1 for all x ∈ U}.

The notion of morphism in V (with continuity conditions on the map of structure sheaves) is
given in the evident manner.

Definition 3.12. An adic space is an object in V locally isomorphic to

(4) (Spa(A,A+),OA, {vx}x∈X)

for sheafy Huber pairs (A,A+). (Recall that we always demand A+ ⊂ A0!) Triples as in (4) will
generally be denoted more succinctly as Spa(A,A+), an abuse of notation that is familiar from the
way we denote affine schemes.

An adic space is called Tate if it is covered by open subspaces Spa(A,A+) for sheafy Huber pairs
(A,A+) such that A is Tate.
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Proposition 3.13. For any sheafy Huber pairs (A,A+) and (B,B+) with B separated and com-
plete,

Hom((A,A+), (B,B+))→ HomV(Spa(B,B+), Spa(A,A+))

is bijective.

Using that valuation rings are maximal with respect to (local) domination in their fraction field,
one establishes:

Proposition 3.14. For adic spaces (X,OX , {vx}) and (X ′,OX′ , {v′x′}), a map f : (X,OX) →
(X ′,OX′) of topologically locally ringed spaces respects the valuation data (i.e., underlies a uniquely
determined map in V) if and only if the map OX′ → f∗(OX) carries O+

X′ into f∗(O
+
X).

In [C3, 16.1] one finds details justifying the following important example that makes the connec-
tion to rigid-analytic geometry:

Example 3.15. There is a unique fully faithful functor rk from the category of rigid-analytic spaces
over k to the category Vk of adic spaces over Spa(k, k0) subject to the conditions that rk(Sp(A)) =
Spa(A,A0), rk carries open immersions to open immersions, and rk(U ∩ V ) = rk(U) ∩ rk(V ) for
admissible open U, V ⊂ X. Moreover, a collection {Ui} of admissible open subsets of a rigid-analytic
space X over k is an admissible cover if and only if {rk(Ui)} is an open cover of rk(X)!

Hence, the viewpoint of adic spaces with their underlying (locally spectral) topology explains in a
very satisfying way what is really going on with admissible opens and admissible covers introduced
by Tate. In effect, this Grothendieck topology is somewhat akin to exploring the topology of the
real line entirely in the language of the totally disconnected archimedean topology Q without ever
knowing about R, making it all the more remarkable that Tate was able to get as far as he did
within the classical MaxSpec framework.

In the context of the preceding example, for any point ξ ∈ rk(X) it is clear that if ξ is a
classical point (equivalently, κ(ξ) is k-finite) then Ork(X),ξ coincides with the local ring on X at
the corresponding classical point. In particular, such stalks of Ork(X) are noetherian and henselian
due to the classical theory. (The henselian condition essentially expresses the k-analytic inverse
function theorem, which also underlies the henselian property for local rings on complex-analytic
spaces.) But are the stalks of Ork(X) noetherian at all points of rk(X)? And how about the
henselian property?

The noetherian question is an important one that appears not to have arisen in the earlier
literature, but fortunately the answer is affirmative though not elementary: an elegant proof due to
Michael Temkin is given in [C3, 15.1] using the excellence of affinoid algebras. As for the henselian
property, there is an affirmative answer in broad generality for Tate adic spaces, once we make a
definition:

Definition 3.16. A commutative ring R is henselian along an ideal J if for every étale R-algebra
S, any section of R/J → S/JS lifts to a section of R→ S.

For local R with maximal ideal J this definition recovers one of several (non-trivially!) equivalent
properties that are used to define the henselian property for local rings in EGA. Beyond the
local case, the analogous several equivalent characterizations are given in [SP, Tag 09XI]. As an
application of these non-trivially equivalent conditions, if I is an ideal of R contained in J and R is
henselian along J then it is also henselian along I [SP, Tag 0DYD] (this fact is intuitively plausible
via the analogy with completeness for noetherian rings along ideals, but not evident from the initial
definition of a henselian pair).
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Theorem 3.17. Let X be a Tate adic space. Choose x ∈ X and let

mx = ker(OX,x → k(x)) = ker(O+
X,x → k(x)+)

be the corresponding maximal ideal of OX,x.

(i) The pair (O+
X,x,mx) is henselian.

(ii) The pair (OX,x,mx) is henselian.

Proof. First we prove (i). Pick an open affinoid U around x on which there exists a topologically
nilpotent unit t (as is provided by the Tate property of X). Then from the definition of mx and
the non-vanishing of |t(x)| we see that mx = tmx ⊂ tO+

X,x, so (i) reduces to the henselian property

for (O+
X,x, tO

+
X,x). By standard limit arguments, a direct limit of henselian pairs is a henselian pair.

Thus, for (i) it suffices to prove the henselian property for each pair (O+
X(W ), tO+

X(W )) for rational
domains W ⊂ U containing x.

In other words, we are reduced to showing that if (A,A+) is a Tate pair that is complete and
t ∈ A is a pseudo-uniformizer (so t ∈ A+ because A+ is open and integrally closed) then we claim
that A+ is t-adically henselian. By design of the completion of a Huber pair, A+ is the integral
closure of a certain t-adic completion. Since any finite subset of A+ ⊂ A0 can be put into a ring
of definition, and all rings of definition have their topology equal to the t-adic topology (in the
sense of commutative algebra) for which they are complete (due to the topological completeness of
the Tate ring A), we are thereby reduced to the henselian property of a ring relative to an ideal
for which the associated adic topology is separated and complete. But that in turn is elementary
via successive approximation (use the characterization in terms of lifting certain residually monic
factorizations of single-variable polynomials, as in the classic setting of complete local noetherian
rings).

For the deduction of (ii) from (i) via artful use of a pseudo-uniformizer and some diagram-chasing
we refer the reader to the proof given in [Bh, 7.5.5(6)], �

Motivated by the case of schemes, we want to relate points of adic spaces to morphisms from
objects of the form Spa(F, F+) for suitable valued fields F . As motivation for the correct class of
such (F, F+) to consider, we first take a look at the distinction between the residue field κ(x) and
its vx-completion for points x in an adic space X. Already for the Berkovich space M(A) associated
to a classical affinoid algebra, it is familiar that the residue field of the stalk of the structure sheaf
at a non-classical point ξ does not have an easy algebraic description directly in terms of A, and
that the completion of that residue field is a more useful invariant than the actual residue field.

Here is an important and non-obvious fact:

Theorem 3.18. If X is a Tate adic then then each point of X admits a unique rank-1 generization.

The proof of this result immediately reduces to the affinoid case X = Spa(A,A+), which is [C3,
8.3.3, 9.1.5]. The idea is as follows. For any any continuous valuation v : A→ Γ∪ {0} bounded by
1 on A+, by continuity of v a pseudo-uniformizer of A carried to a topologically nilpotent nonzero
element in the associated valuation topology on Frac(A/ ker(v)). Thus, this topology coincides with
that of a rank-1 valuation on the same field by Proposition 1.8. In more concrete term, the subring
of power-bounded elements of this field relative to the v-topology is a rank-1 valuation ring. The
real work in the proof of Theorem 3.18 is to show that this rank-1 valuation with the same kernel
as v is really continuous on A. That in turn rests on the almost purely algebraic description of
continuity of valuations in (1).

Since valuations admitting a rank-1 generization on the same fraction field are precisely those
with a nonzero topologically nilpotent in the fraction field (Proposition 1.8), for any Tate adic space
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X the completed residue field k(x) := κ̂(x) at each point x ∈ X is a non-archimedean field (even if

vx is a higher-rank valuation, or in other words the completion k(x)+ = κ̂(x)+ of the valuation ring
for vx is a proper subring of the rank-1 valuation ring k(x)0 of power-bounded elements of k(x)).
This brings us to:

Definition 3.19. An affinoid field is a pair (k, k+) where k is a non-archimedean field and k+ is
an open valuation subring of k0.

Exercise 3.20. Show that if (k, k+) is an affinoid field then it is a Huber pair when k is given the
topology for its non-archimedean absolute value. Such a pair is thereby sheafy (such as by Huber’s
criteria, among other reasons), so Spa(k, k+) makes sense as an adic space and the given absolute
value on k is the unique generic point. (When k+ is a higher-rank valuation ring, such adic spaces
have more than a single point!)

Proposition 3.21. Let X be a Tate adic space. The map of sets

|X| → {f : Spa(k, k+)→ X |κ(x) is dense in k}

(with (k, k+) a varying affinoid field) defined by x 7→ (Spa(κ̂(x), κ̂(x)+) → X) is bijective, with
inverse assigning to any f the image of the closed point.

We emphasize that in contrast with schemes, in this description of the underlying via maps from
“test objects” we are using test objects whose underlying space typically has more than one point
(when k+ is a higher-rank valuation ring). This makes the study of fibers of morphisms between
adic spaces exhibit features that deviate somewhat from experience with fibers of maps of schemes.

4. A mapping property for certain proper birational maps

To finish our discussion of the basics of adic spaces for the purposes of this workshop, we want to
discuss a certain factorization property for sheafy Tate pairs (A,A+) (to be applied in the perfectoid
setting, so we definitely cannot make any noetherian assumptions!).

Let X = Spa(A,A+) as a topological space; this is equipped with two sheaves of rings OX and
O+
X whose stalks at each point are local rings. Let X+ denote the locally ringed space (X,O+

X). If
we invert $ on the structure sheaf of X+ then we recover (X,OX), but beware that the natural
map of ringed spaces (X,OX)→ (X,O+

X) is not a map of locally ringed spaces (as the inclusion of

stalks O+
X,x ↪→ OX,x is not local!).

We will find it convenient in several places below to use an observation of Tate from [EGA I,
1.8.1] (given near the end of [EGA II]):

Proposition 4.1 (Tate). For any ring R and locally ringed space (Z,OZ), the map of sets

Hom((Z,OZ),Spec(R))→ Hom(R,OZ(Z))

defined by “induced map on global functions” is a bijection.

Combing this with a review of the construction of fiber products of schemes via bootstrapping
from the affine case then yields:

Corollary 4.2. A fiber product of schemes is also a fiber product in the category of all locally ringed
spaces.

Applying Proposition 4.1 to the locally ringed space X+ and the ring A+, we see that there
exists a unique map of locally ringed spaces

h : X+ → Spec(A+)
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such that on global sections it induces the canonical composite map A+ → Â+ =: O+
X(X).

Example 4.3. Consider a complete Tate pair (k, k0) for a rank-1 valuation ring k0. In this case X+

is a 1-point space with stalk k0, so X+ = Spf(k0) and h is the canonical map Spf(k0)→ Spec(k0).

Our aim is to prove the following general fact:

Theorem 4.4. For any proper map f : Y → Spec(A+) that restricts to an isomorphism over the
open subscheme Spec(A) ⊂ Spec(A+), there is a unique factorization

X+ g→ Y
f→ Spec(A+)

of h through f .

In the special case that (A,A+) = (k, k0) for a non-archimedean field k, the assertion in the
theorem amounts to the equality Y (k0) = Y (k) that is an instance of the valuative criterion for
properness. The general case will be deduced from the valuative criterion for properness applied to
general valuation rings.

Theorem 4.4 is motivated by Raynaud’s approach to classical rigid-analytic geometry via “generic
fibers” of certain formal schemes over the valuation ring, using the identification of Spa(B,B0)+

for a classical affinoid algebra B with the inverse limit of all formal-scheme models of Sp(B) in
the sense of Raynaud. This identification is too much of a digression to formulate here and is not
needed for this workshop, so we will pass over it in silence.

Proof. We first prove uniqueness in a slightly wider generality, with X+ replaced by any open sub-
space U . This step will not use the full strength of A+-properness, but rather just the separatedness
aspect. Letting g1, g2 : U ⇒ Y be two such factorizations, we want to prove g1 = g2. By Corollary
4.2, we can form a unique map g = (g1, g2) : U → Y × Y over Spec(A+) whose compositions with
the projections are the gi’s. It suffices to show that g factors through the diagonal ∆Y/A+ .

Factoring through a closed immersion of schemes is characterized in the category of all locally
ringed spaces in terms of killing the quasi-coherent ideal under pullback. Hence, for uniqueness in
the refined form we are aiming to establish, it suffices to check that the natural OY×Y -linear map
θ : I∆ → g∗(OU ) of sheaves on Y × Y vanishes.

Let $ be a pseudo-uniformizer of A (so $ ∈ A+). The locally ringed space (X,O+
X [1/$]) is

the adic space (X,OX) = Spa(A,A+) that is the preimage of the open subscheme Spec(A) =
Spec(A+[1/$]) under h, and the gi’s coincide on this preimage since YA = Y [1/π] → Spec(A) is
an isomorphism by hypothesis. Hence, the g−1(OU )-linear map g−1(I∆) → OU corresponding to
θ vanishes on stalks after inverting $, so it vanishes since $-multplication on O+

X is injective (as
$ is a global unit in OX). This implies θ = 0 as desired, so uniqueness of the global factorization
is proved with X+ replaced by any open subspace.

For existence of a morphism g : X+ → Y of locally ringed spaces over Spec(A+), we first prove
a technical lemma:

Lemma 4.5. It suffices to prove existence when Y is finitely presented over A+.

Proof. Since $ multiplies injectively on O+
X , if there is to exist a factorization g : X+ → Y with a

general Y as under consideration (perhaps not finitely presented over A+) then it factors through
the closed subscheme defined by the quasi-coherent ideal sheaf of $-power torsion in OY . That
closed subscheme satisfies the same initial hypotheses as Y , so it is harmless to rename it as Y
for the purposes of proving existence. In other words, we may assume $-multiplication on OY is
injective.
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By [C1, Thm. 4.2], there is a closed immersion Y ↪→ Y ′ into a finitely presented and separated
A+-scheme Y ′. Let {Iλ} be the directed system of finitely generated quasi-coherent ideal sheaves
in OY ′ contained in IY . The A+-scheme Yλ ⊂ Y ′ defined by killing Iλ is finitely presented and
separated over A+, and {Yλ} is an inverse system with affine transition maps having inverse limit
Y . Since Y [1/$] is trivially finitely presented over A+[1/$] = A (as Y [1/$] → Spec(A) is even
an isomorphism, by assumption), its ideal inside OY ′ is finitely generated. Thus, for large enough
λ we have Yλ[1/$] = Y .

Now by replacing Y ′ with Yλ0 for some large λ0 we may arrange that Y ′[1/$] = Spec(A). The
ideal of Y in OY ′ therefore vanishes after inverting $, so Y is defined precisely by killing the
$-power torsion in OY ′ (since we have arranged that OY has vanishing $-torsion). In particular,
HomA+(X+, Y ) = HomA+(X+, Y ′), so if we can prove existence of the desired factorization using
the possibly non-proper Y ′ in place of Y (note that we have arranged that at least Y ′[1/$] →
Spec(A) is an isomorphism!) then we get it for Y as desired.

Since Y ′ is separated and finitely presented over A+, by standard direct limit techniques from
[EGA, IV3] we can write Y ′ = Y ′0 ⊗R A+ for a sufficiently large noetherian subring R ⊂ A+

containing $ and a separated R-scheme Y ′0 of finite type such that Y ′0 [1/$] = Spec(R[1/$]). Since
R is noetherian, by the Nagata compactification theorem [C1] there exists a schematically-dense
open immersion j : Y ′0 ↪→ Z0 into a proper R-scheme. Inverting $ preserves the schematic density
condition, but the open immersion j[1/$] is a section (since Y ′0 [1/$] = Spec(R[1/$]) by design!)
and hence is also a closed immersion. Being schematically dense, j[1/$] must therefore be an
isomorphism. That is, Z0[1/$] = Spec(R[1/$]). We conclude that Z ′ := Z0 ⊗R A+ is a finitely
presented and proper A+-scheme in which Y ′ is an open subscheme such that Z ′[1/$] = Spec(A).

The composite quasi-compact immersion Y ↪→ Y ′ ↪→ Z ′ over A+ must be a closed immersion
since each of Y and Z ′ is A+-proper, so Y is the inverse limit of the collection of finitely presented
closed subschemes Zλ of Z ′ containing Y , and clearly Zλ[1/$] = Spec(A) for all λ (by squeezing
from the same for Y and Z ′). Hence, once the finitely presented case is settled we get unique
factorizations X+ → Zλ for each λ and these must be compatible (due to uniqueness). Thus, we
can pass to the inverse limit to get a map X+ → Y that does the job. �

Now we may and do assume the A+-proper Y is finitely presented. Due to the stronger form of
uniqueness that has been proved, to show existence it suffices to work locally on X+. Let x ∈ X be
a point of the underlying topological space, so k(x) admits $ as a pseudo-uniformizer. The natural

map A+ → k(x) lands inside k(x)+ since O+
X(X) = Â+, so the valuation ring k(x)+ is thereby an

A+-algebra and hence k(x)+[1/$] is an algebra over A+[1/$] = A. The equality Y [1/$] = Spec(A)
thereby provides a map

Spec(k(x))→ Spec(A) = Y [1/$] ⊂ Y
over Spec(A+), and the valuative criterion for properness using the (essentially arbitrary) valuation
ring k(x)+ uniquely extends this to a map of locally ringed spaces

Spec(k(x)+)→ Y

over Spec(A). This latter map carries the closed point to some point of Y that we’ll call g(x).
Pick an affine open Spec(B) ⊂ Y around g(x), so B is a finitely presented A+-algebra (as we

have arranged that Y is finitely presented over A+!) and we have a local map Bg(x) → k(x)+ over

A+, which in turn defines a map of A+-algebras B → k(x)+. Inverting $ yields an A-algebra map

ϕ : B[1/$]→ k(x)

corresponding via Proposition 4.1 to a unque map of locally ringed spaces Spa(k(x), k(x)+) →
Spec(B[1/$]) over Spec(A).
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We claim that the open subscheme Spec(B[1/$]) ⊂ Y [1/$] = Spec(A) contains the image of
x under the map of locally ringed spaces hη : X → Spec(A) defined via Proposition 4.1 simi-
larly to how we built h. Indeed, since x lies in the image of the map of locally ringed spaces
Spa(k(x), k(x)+) → X it suffices (by Proposition 4.1) to check that the natural map A → k(x)
factors (necessarily uniquely) through A→ B[1/$], but this holds because ϕ is an A-algebra map.
Having just proved that X → Spec(A) carries x into the open subscheme Spec(B[1/$]), pullback
on functions gives a map ϕ̃ : B[1/$] → OX,x of A-algebras lifting ϕ. By design ϕ carries B into
k(x)+, so by the Cartesian property of the diagram

O+
X,x

//

��

k(x)+

��
OX,x

// k(x)

analogous to (3) we can uniquely fill in the indicated map F in a commutative diagram of rings:

B

��

F // O+
X,x

��

// k(x)+

��
B[1/$]

ϕ̃
// OX,x

// k(x)

The upshot of this discussion is that we have lifted the initial map B → k(x)+ (as built above
from the design of B!) to a map F : B → O+

X,x! Moreover, this is a map of A+-algebras because

it suffices to check that after composing with the inclusion O+
X,x ↪→ OX,x = O+

X,x[1/$] and using

that ϕ̃ is a map of algebras over A = A+[1/$].
Now it is time to exploit that B is finitely presented over A+. Letting U vary through the

collection of rational domains around x in X, we have

O+
X,x = lim−→

U

O+
X(U)

as A+-algebras. Thus, by the finite presentation we can find some U so that F lifts to an A+-algebra
map B → O+

X(U). Invoking again Proposition 4.1, this latter ring map arises from a unique map
of locally ringed spaces

U+ → Spec(B)

over Spec(A+). Composing with the inclusion of Spec(B) into Y thereby solves the factorization
problem on the open subspace U+ ⊂ X+ around the point x that was arbitrarily chosen. These
factorizations agree on overlaps due to the refined form of uniqueness that we proved at the start,
so they glue to provide the desired factorization g : X+ → Y . This concludes the proof of Theorem
4.4. �
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