PERFECTOID SPACES I

AISE JOHAN DE JONG

1. Disclaimer

This is the transcription of a lecture given by Aise Johan de Jong for the MSRI Hot Topics Workshop on the homological conjectures. Any errors or typos are my responsibility¹.

This lecture introduces the theory of perfectoid spaces, building upon the previous lectures on perfectoid fields, perfectoid algebras, and adic spaces.

2. DEFINITIONS

Fix a prime p, and K, | \cdot | a perfectoid field with its valuation, and write $\mathfrak{m} = K^{\infty} \subseteq K^{\infty}$ for the maximal ideal contained in the subring of power bounded elements. Let K^{\flat} denote its tilt, and correspondingly write $\mathfrak{m}^{\flat} \subseteq K^{\flat\circ} \subseteq K^{\flat\circ}$. Fix a pseudo-uniformizer $t \in K^{\flat\circ}$ such that $|p| \leq |t| < 1$, and set $\varpi = t^{\sharp}$ to be the corresponding pseudo-uniformizer in K° .

2.1. **Definition.** A perfectoid affinoid K-algebra (R, R^+) is a Tate affinoid (K, K°) -algebra, with *R* perfectoid. This just means that *R* is a perfectoid *K*-algebra, and $R^+ \subseteq R^{\circ}$ is an open and integrally closed subring of the power bounded elements in *R*.

2.2. Remark.

(1) In particular, we have

$$
\mathfrak{m}R^{\circ} = R^{\circ\circ} \subseteq R^+ \subseteq R^{\circ},
$$

and from this one can check that the cokernel of the map $R^+ \hookrightarrow R^{\circ}$ is killed by m, so $R^+ \to R^{\circ}$ is an almost isomorphism.

(2) R^+ is specified by choosing $\overline{R^+} = R^+/\mathfrak{m}R^{\circ} \subseteq R^{\circ}/\mathfrak{m}R^{\circ}$. This essentially means that choosing an open integrally closed subring R^+ of R° is the same as choosing an open integrally closed subring of R°/mR° .

With this definition, we have the tilting correspondence for perfectoid algebras, which says that

Date: March 12, 2018.

¹Typeset by Ashwin Iyengar

PERFECTOID SPACES I 2

2.3. Proposition (Tilting Correspondence). *The category of perfectoid a*ffi*noid K-algebras is equivalent to the category of perfectoid affinoid* K^{\flat} -algebras. Moreover, under this equivalence an affinoid K-algebra (R, R^+) is sent to $(R^{\flat}, R^{\flat +})$, where R^{\flat} is the usual tilt, and $R^{\flat +}$ is *determined by taking the open integrally closed subring of* R^{\flat} *corresponding to the image of R*⁺ *under the map*

$$
R^{\circ} \to R^{\circ}/\mathfrak{m} R^{\circ} \xrightarrow{\sim} R^{\flat \circ}/\mathfrak{m}^{\flat} R^{\flat \circ}.
$$

In this case, we have

- *(1)* $R^{\flat +} = R^{+\flat}$ and
- *(2)* R^+/p *is semiperfect.*

3. Tilting Rational Subsets

In this section we will give a proof of the fact that affinoid perfectoid spaces and their rational subsets "behave well after tilting".

If \sharp denotes the untilt $R^{\flat} \to R$ or $R^{+\flat} \cong R^{\flat +} \to R^+$, then we have a commutative diagram

$$
R^{\flat} \xrightarrow{\sharp} R
$$

$$
\uparrow \qquad \qquad \uparrow
$$

$$
R^{\flat +} \cong R^{+\flat} \xrightarrow{\sharp} R^{+}
$$

These are compatible with morphisms in the category of perfectoid affinoid *K*-algebras, in the sense that given a map $(R, R^+) \rightarrow (S, S^+)$, the functorially-obtained maps make the following diagram commute:

We come to the main theorem.

3.1. Theorem.

(1) For any valuation $x : R \to \Gamma \cup \{0\}$ in $\text{Spa}(R, R+)$, the composition

$$
R^{\flat} \xrightarrow{\sharp} R \xrightarrow{x} \Gamma \cup \{0\}
$$

PERFECTOID SPACES I 3

defines a point in $X^{\flat} = \text{Spa}(R^{\flat}, R^{\flat +})$ *. In fact, this process induces a homeomorphism* $({\cdot})^{\flat}: X \to X^{\flat}.$

- *(2)* For $U \subseteq X$ *a rational subset, the corresponding* $U^{\flat} \subseteq X^{\flat}$ *under the map* $(\cdot)^{\flat}$ *is also rational.*
- (3) The complete affinoid Tate algebra $(\mathscr{O}_X(U), \mathscr{O}_X^+(U))$ is perfectoid, with tilt $(\mathscr{O}_{X^{\flat}}(U^{\flat}), \mathscr{O}_{X^{\flat}}^+(U^{\flat}))$.

The proof of part (1) is easy-ish. The map $X \to X^{\flat}$ is well-defined because the untilt map] is a multiplicative map of monoids. One can show that the map is a bijection by showing that valuations on *R* or R^{\flat} are parametrized by valuation rings on $R^{\circ}/\mathfrak{m}R^{\circ} \cong R^{\flat\circ}/\mathfrak{m}^{\flat}R^{\flat\circ}$. For continuity of the map, one can check that

$$
((\cdot)^{\flat})^{-1}\left(X^{\flat}\left(\frac{a_1,\ldots,a_n}{b}\right)\right)=X^{\flat}\left(\frac{f_1,\ldots,f_n}{g}\right),
$$

where $f_i = a_i^{\sharp}$ and $g = b^{\sharp}$: this is basically immediate from the definitions. The harder part is showing that the inverse map is continuous. We can do this by showing that the image of a rational subset is in fact a rational subset.

First we state a lemma that fully describes Huber's presheaf taking values on rational open subsets pulled back from X^{\flat} .

3.2. **Lemma.** *If* $X = \text{Spa}(R, R^+)$ *is any perfectoid affinoid* K -algebra, then let $U = X \left(\frac{f_1, \ldots, f_n}{g} \right)$ *g* \setminus be a rational subset. Assume $f_i = a_i^{\sharp}, g = b^{\sharp}$ for $0 < i < n$, and $a_n = t^N$ and $f_n = \varpi^N$ for *some* $N >> 0$ *. Then let* $U^{\flat} = \left(\frac{a_1,...,a_n}{b}\right)$ *.*

(1) The ϖ -*adic completion*

on
\n
$$
R^+\left\langle \left(\frac{f_i}{g}\right)^{1/p^{\infty}} \right\rangle = \widehat{R^+}\left[\left(\frac{f_i}{g}\right)^{1/p^{\infty}}\right]
$$

\n \therefore algebra.
\n $\Gamma \div \left(1/p^{\infty}\right)$

is a perfectoid $K^{oa} - algebra$.

(2) The map

$$
R^+[x_i^{1/p^\infty}] \xrightarrow{\varphi} R^+\left[\left(\frac{f_i}{g}\right)^{1/p^\infty}\right]
$$

taking $x_i^{1/p^m} \mapsto (f_i/g)^{1/p^m}$ *for all m is surjective, and the natural map* $(g^{\epsilon}x_i^{\epsilon} - f_i^{\epsilon} : \epsilon = 1/p^m \text{ for all } m) \to \ker \varphi$

is an almost isomorphism.

(3) $(\mathscr{O}_X(U), \mathscr{O}_X^+(U))$ is a perfectoid affinoid K-algebra with tilt $(\mathscr{O}_{X^{\flat}}(U^{\flat}), \mathscr{O}_{X^{\flat}}^+(U^{\flat}))$ and

$$
R^+\left\langle \left(\frac{f_i}{g_i}\right)^{1/p^{\infty}}\right\rangle^a \cong_{K^{\circ a}} \mathscr{O}_X(U)^{\circ a}.
$$

 $Proof.$ See [1], Lemma 9.2.5. \Box

Now we will state and prove the approximation lemma, which lets us nicely approximation elements of *R* by untilts (i.e. "perfect elements" in some sense). First we state the lemma for perfectoid polynomial rings.

3.3. Lemma (Approximation). Fix $R = K\left\langle T_1^{1/p^{\infty}}, \ldots, T_n^{1/p^{\infty}} \right\rangle$ and $f \in R^{\circ}$ an integral *element, homogeneous of degree* $d \in \mathbf{Z}_{(p)}$ *. Then for any* $c \in \mathbf{Q}_{\geq 0}$ *and any* $\epsilon > 0$ *there exists* $g_{c,\epsilon} \in R^{\flat \circ}$ *homogeneous of degree d such that*

$$
\left| (f - g_{c,\epsilon}^{\sharp})(x) \right| \leq |\varpi|^{1-\epsilon} \max(|f(x)|, |\varpi|^c) \text{ for all } x \in \text{Spa}(R, R^{\circ}).
$$

Proof. We do this using an inductive process. Fix $\epsilon > 0$: we will then drop it from $g_{c,\epsilon}$ and write *g^c* instead.

What we'll actually show is that for $c \in \mathbf{Q}_{\geq 0}$ you can find a $g_c \in R^{\flat\circ}$ homogeneous of degree *d* and some $\epsilon(c) > 0$ such that

$$
\left| (f - g_c^{\sharp})(x) \right| \le |\varpi|^{1 - \epsilon + \epsilon(c)} \max(|f(x)|, |\varpi|^c) \text{ for all } x \in \text{Spa}(R, R^{\circ}),
$$

which implies the result. We start with the case $c = 0$. In this case, the statement says that we wish to find $g_0 \in R^{\flat \circ}$ such that

$$
\left| (f - g_0^{\sharp})(x) \right| \le |\varpi|^{1-\epsilon} \text{ for all } x \in \text{Spa}(R, R^{\circ}).
$$

To find such a g_0 , note that $R^{\circ}/\varpi \cong R^{\flat\circ}/t$, so pick an element $g_0 \in R^{\flat\circ}$ which has the same image, under this quotient, as *f*. Then $f - g_0^{\sharp} = \pi h$ for some $h \in R^{\circ}$, so in fact

$$
\left| (f - g_0^{\sharp})(x) \right| = |(\varpi h)(x)| = |\varpi| |h(x)| \le |\varpi| \text{ for all } x \in \text{Spa}(R, R^{\circ}),
$$

which concludes the base case.

Now suppose you've shown the result for *c*, so that we have an element $g_c \in R^{\flat \circ}$ and $\epsilon(c) > 0$ satisfying the result. To "induct", we want to be able to prove the theorem for $c' := c+a$, where $0 < a < \epsilon$. Since making $\epsilon(c)$ smaller weakens our result, we can assume that $\epsilon(c) < \epsilon - a$. We can define the rational open subset $U_c^{\flat} = X^{\flat} \left(\frac{g_c}{t^c} \right)$, whose pullback is the rational subset

$$
U_c = X\left(\frac{g_c^{\sharp}}{\varpi^c}\right).
$$

But if $x \in U_c$, then suppose $|f(x)| > |\varpi|^c$. Then

$$
|f(x)| \le \max(|(f - g_c^{\sharp})(x)|, |g_c^{\sharp}(x)|)
$$

\n
$$
\le \max(|\varpi|^{1-\epsilon+\epsilon(c)} \max(|f(x)|, |\varpi|^c), |\varpi|^c)
$$

\n
$$
\le \max(|\varpi|^{1-\epsilon+\epsilon(c)} |f(x)|, |\varpi|^c)
$$

But it can't be true that $|\varpi|^{1-\epsilon+\epsilon(c)}|f(x)| \leq |\varpi|^{c}$, so we must have the opposite, which by basic facts about ultrametric inequalities shows that $|f(x)| = |\varpi|^{1-\epsilon+\epsilon(c)} |f(x)|$, which can't be true (assume $\epsilon + \epsilon(c) \neq 1$ here). This, after swapping f with g_c^{\sharp} , shows that actually

$$
U_c = X\left(\frac{f}{\varpi^c}\right).
$$

Then note that

$$
f - g_c^{\sharp} \in \varpi^{c+1-\epsilon+\epsilon(c)} \mathscr{O}_X^+(U_c)^{\circ} \cong_a \varpi^{c+1-\epsilon+\epsilon(c)} R^+ \left\langle \left(\frac{g_c^{\sharp}}{\varpi^c}\right)^{1/p^{\infty}} \right\rangle
$$

and as $f - g_c^{\sharp}$ is homogeneous of degree *d*, it lies in

$$
\bigoplus_{i\in \mathbf{Z}_{(p)},0\leq i\leq 1}\varpi^{c+1-\epsilon+\epsilon(c)}\left(\frac{g_c^{\sharp}}{\varpi^c}\right)^i R_{\deg-d-di}^{\circ}.
$$

So we can pick $r_i \in R^{\circ}$ homogeneous of degree $d - di$, where $r_i \to 0$ as $i \to \infty$ and all but finitely many $r_i = 0$, so that

$$
f-g_c^{\sharp}=\sum_{i\in {\bf Z}_{(p)}, 0\leq i\leq 1}\varpi^{c+1-\epsilon+\epsilon(c')}\left(\frac{g_c^{\sharp}}{\varpi^c}\right)r_i.
$$

Notice here we put $\epsilon(c')$ instead of $\epsilon(c)$: this is an extra term from the fact that the almost isomorphism is with respect to the maximal ideal from the valuation topology on *K*. We need to look at the tilting situation, so pick elements $s_i \in R^{b+}$ homogeneous of degree $d - di$ with $s_i \to 0$ as $i \to \infty$, such that ϖ divides $r_i - s_i^{\sharp}$. Then we want to define

$$
g_{c'} = g_c + \sum_{i \in \mathbf{Z}_{(p)}, 0 \le i \le 1} t^{c+1-\epsilon+\epsilon(c)} \left(\frac{g_c}{t^c}\right)^i s_i
$$

Now it suffices to show that

$$
|(f - g_{c'}^{\sharp})(x)| \leq |\varpi|^{1-\epsilon+\epsilon(c')} \max(|f(x)|, |\varpi|^{c'}).
$$

This is done in [2], Lemma 6.5.

We now summarize everything we want.

3.4. **Proposition.** Let $(R, R^+)/(K, K^{\circ})$ be as above. Then

(1) For
$$
f \in R
$$
, $c \in \mathbf{Q}_{\geq 0}$, $\epsilon > 0$ there exists $g_{c,\epsilon} \in R^{\flat}$ such that for all $x \in X$ we get

$$
|(f - g_{c,\epsilon}^{\sharp})(x)| \leq |\varpi|^{1-\epsilon} \max(|f(x)|, |\varpi|^{c}).
$$

(2) If $f, g \in R$ and $c \geq 0$, then there exists $a, b \in R^{\flat}$ such that

$$
X\left(\frac{f,\varpi^{c}}{g}\right) = X\left(\frac{a^{\sharp},\varpi^{c}}{b^{\sharp}}\right).
$$

 \Box

- (3) For any $x \in X$, the completed residue field $\widehat{\kappa(x)}$ *is a perfectoid field.*
- (4) $X \to X^{\flat}$ *is a homeomorphism identifying rational subsets.*

Proof. We prove (1). One can assume $R^+ = R_0$. By enlarging *c* a bit we assume that $f \in R^{\circ}$ and $c \in \mathbf{Z}_{\geq 0}$. Then we can write

$$
f = g_0^{\sharp} + \varpi g_1^{\sharp} + \cdots + \varpi^c g_c^{\sharp} + \varpi^{c+1} f_{c+1}
$$

for certain $g_i \in R^{\flat\circ}$ and $f_{c+1} \in R^{\circ}$. Then using the map

$$
K\left\langle T_0^{1/p^\infty},\ldots,T_c^{1/p^\infty}\right\rangle \to R
$$

sending $T_i^{1/p^m} \mapsto (g_i^{\sharp})^{1/p^m}$ for all *m*, we see that the image of $T_0 + \varpi T_1 + \cdots + \varpi^c T_c$ is exactly $f - \varpi^{c+1} f_{c+1}$.

Now apply the approximation lemma to $\sum_i \varpi^i T_i$ to conclude the argument. The rest of the argument can be found in [2].

 \Box

REFERENCES

- [1] B. Bhatt, *Lecture notes for a class on perfectoid spaces*.
- [2] P. Scholze, *Perfectoid Spaces*, Publ. Math. de l'IHÈS 116 (2012), no. 1, 245–313.