
THE RIEMANN EXTENSION THEOREM

KIRAN KEDLAYA

1. Disclaimer

This is the transcription of a lecture given by Kiran Kedlaya for the MSRI Hot Topics

Workshop on the homological conjectures. Any errors or typos are my responsibility
1
.

This lecture describes André and Bhatt’s perfectoid version of the Riemann Extension The-

orem, used in the proof of the direct summand conjecture. We begin by giving Riemann’s

original formulation of the theorem, as well as a version for rigid analytic spaces, and then

show how the results extend to the perfectoid case.

2. History

2.1. Riemann’s Original Theorem.

Theorem 2.1.1 (Riemann). Let U ✓ C be an open subset with z0 2 U , and f : U \{z0}! C
a holomorphic function. If f is bounded on a punctured neighborhood of z0 then f extends
uniquely to a holomorphic function ef : U ! C.

Proof. Define g : U ! C by

g(z) =

(
f(z)(z � z

2
0) z 6= z0

0 z = z0
.

Then g is continuous and differentiable, and g
0(z0) = 0. By the Cauchy-Goursat theorem, g

is holomorphic on U , so near z0 we have

g(z) =
1X

i=0

gi(z � z0)
i

with g0 = g(0) = 0 and g1 = g
0(0) = 0. So set ef to be the holomorphic function defined

locally by

ef =
g(z)

(z � z0)2
.

⇤
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2.2. Higher Dimensions. The previous theorem was defined for open subsets of C, but we

can extend the result to any complex variety that is “nice enough”: in particular, we need

our variety to be normal, as we will show in a moment.

Theorem 2.2.1. Let X be a normal complex variety, assume g 2 O(X), and let g be a
nonzerodivisor. Now let Z := {g = 0}, and say we have a holomorphic function f : X \Z !
C. If, for all compact subsets K ✓ Z, f is bounded on some neighborhood of K in X, then
there exists a unique holomorphic extension ef : X ! C.

The key here is really normality: for a counterexample, consider the vanishing locus X =
V (z1z2) in the complex affine plane. Then take the function z1 + z2 on X, whose vanishing

locus is just the origin O = (0, 0), and suppose we have some holomorphic function f :
X \O ! C, which is bounded on some disk around the origin intersected with X. Then the

point is that we can’t tell the difference between this space and its normalization, which is

the disjoint union of two copies of C, i.e. has coordinate ring C[x]⇥C[y]. To see it explicitly,

define the function

f(z1, z2) =

(
z2 + 1 z1 = 0

z1 z2 = 0

this is clearly holomorphic on X \O and bounded locally, but you clearly can’t extend it to

even a continuous function on X.

3. Non-Archimedean Case

This is due to Bartenwerfer.

Theorem 3.0.1. Let K be a nonarchimedean field with 0 < |$| < 1, let A be a affinoid
algebra over K, and suppose A is normal as a ring. Fix g 2 A a nonzerodivisor. Then

A
� ⇠�! lim �

n

A

⌧
$

n

g

��

is an isomorphism.

We won’t prove this in full generality, but we’ll demonstrate why it should be true for the

rigid analytic unit disc.

Example 3.0.2. Let A = K hT i, and set g = T . Note the transition maps A h$n
/gi� !

A h$n�1
/gi� are inclusions, and A

� ✓ A h$n
/gi� and thus

lim �
n

A

⌧
$

n

g

��

=
\

n

✓
A

⌧
$

n

g

��◆
.

If we express the valuation additively (i.e. take a negative log) on K by v, then a given

element in A
�

is a power series whose Newton polygon is contained in the green area in the

following cartoon:
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A given element in A h$n
/gi� can be expressed as a Laurent series in T , say f =

P
i fiT

i
,

where fi 2 K, with some size restriction on the fi, which is pictorially expressed by saying

that the Newton polygon of f is contained in the union of the green and blue areas in the

following cartoon:

I n the above cartoon, the slope of the blue line is proportional to �n, so as n increases, the

Newton polygons will increasingly be supported more towards the green quadrant. Taking the

limit (i.e. intersection), one sees that anything that lives in the intersection can’t be supported

at any nonzero distance away from the y-axis in the blue area, hence the intersection must

be exactly A
�
. This proves the isomorphism in this special case, but this is not a model for

the general proof.
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4. Almost commutative algebra in Pro-systems

Let R be a ring with t 2 R containing a compatible system of p
n
th roots of t for all n. We

want to work in t-almost mathematics, i.e. almost mathematics with respect to the ideal

(t1/p
1
). Define proModR to be the category of pro-systems of R-modules, indexed by N.

Definition 4.0.1. A system {Mn}n>0 2 proModR is almost-pro-zero if

8k, 8n > 0, 9n0 � n such that: t
1/pk im(Mn0 !Mn) = 0.

Remark 4.0.2 (Warning). Saying {Mn}n>0 is zero in proModaR is the same as saying

8n, 9n0 � n such that: 8k, t1/pk im(Mn0 !Mn) = 0.

which is different. In particular zero in proModaR implies almost-pro-zero, but not the con-

verse.

Some facts:

(1) If {Mn}n>0 is almost-pro-zero, then

(R lim �
n

)Mn = 0 in DModaR,

the derived category of ModaR. This is because for all k, the map

{Mn[t
1/pk ]}n>0 ! {Mn}n>0

gives a pro-isomorphism.

(2) Almost-pro-zero systems remain almost-pro-zero under any R-linear functor.

5. The Perfectoid Riemann Extension Theorem

Scholze first proved a version of this in [2] and Bhatt in [1].

Theorem 5.0.1. If K is a perfectoid field, choose a pseudo uniformizer 0 < |$| < 1 of the
form $ = $

]
0 for $0 2 K

[. Let A be a perfectoid K-algebra, and fix g 2 A
� of the form g

]
0 for

g0 2 A
[�. Choose m � 0. Then the pro-morphism f : {A�

/$
m}n>0 ! {A h$n

/gi� /$m}n>0

given by

{fn : A�
/$

m ! A

⌧
$

n

g

��

/$
m}n>0

is a ($g)-almost-pro-isomorphism, i.e. the kernel and cokernel of this map is ($g)-almost-
pro-zero in proModA�.

Remark 5.0.2. (1) We can work in $g-almost mathematics because g is assumed to be

an untilt, and thus has a compatible system of p-power roots.

(2) Note in particular that we don’t require any normality condition, which is surprising,

and says that something is really different in this perfectoid situation. We will remark

further on this in the next example. We should mention that A perfectoid implies A

seminormal.
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(3) Futhermore we don’t require that g is a nonzerodivisor. In fact, one can show that

ker

 
A

� ! lim �
n

A

⌧
$

n

g

��
!

is almost zero.

(4) This should imply the previous theorem of Bartenwerfer.

Example 5.0.3. Let’s consider the perfectoid version of our non-normal counterexample

to the Riemann extension theorem. Fix your favorite perfectoid field K and take A =

K

D
T

1/p1

1 , T
1/p1

2

E
/(T1T2)1/p

1
, where the bar denotes topological closure. As before, let

g = T1 + T2 and consider the map

A
� ! lim �

n

A

⌧
$

n

g

��

.

This map is clearly injective, so it suffices to show that the cokernel is killed by the ideal

(($g)1/p
1
). But

lim �
n

A

⌧
$

n

g

��
⇠= K

�
D
T

1/p1

1

E
⇥K

�
D
T

1/p1

2

E
,

and the cokernel of the above map is the difference of the constant terms of the two Tate

algebras, which lands in K
�
. But given a pair (f, g) 2 K

�
D
T

1/p1

1

E
⇥K

�
D
T

1/p1

2

E
, one can

check that multiplication by g
1/pk

kills the constant term.

Example 5.0.4. As a second example, let K be as before, and then let A = K
⌦
T

1/p1
↵

be

the perfectoid affine line. We take g = T . Then we can show, via a similar picture to the

first picture, that

K
� ⌦

T
1/p1

↵
/$

m ⇠�! lim �
n

K
⌦
T

1/p1
↵⌧$

n

T

��

/$
m
.

But the condition of the pro-morphism f being an almost-pro-isomorphism is actually stronger!

We’ll draw another picture in a moment to illustrate how to prove the theorem in this case.

In fact, Example 5.0.4 is all we need to deduce the theorem in full generality: to see this,

note that we can tensor the maps

{fm : K� ⌦
T

1/p1
↵
/$

m ! K
� ⌦

T
1/p1

↵⌧$
n

T

��

/$
m}n>0.

However, given a perfectoid algebra A over K and a g as in the Theorem, we can define

a map K
� ⌦

T
1/p1

↵
! A

�
which sends T

1/p1 7! g
1/p1

. If we tensor this map with the

above pro-isomorphism, one can show that in fact the targets of the fm become $-almost

the pro-morphism you wanted to show in the general case. It’s remarkable that the al-

most mathematics is able to reduce the entire theorem to what is essentially the simplest

example.
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Finally, we will prove the case of the simplest example, which by the above discussion, proves

the theorem.

Proof of Example 5.0.4. For A = K
⌦
T

1/p1
↵

and g = T , we want to check that the pro-

morphism

{fm : K� ⌦
T

1/p1
↵
/$

m ! K
� ⌦

T
1/p1

↵⌧$
n

T

��

/$
m}

is an almost-pro-isomorphism. It suffices to show that the cokernel is almost-pro-zero, so we

need to show that for each k and n, we can find n
0
such that coker(fn0)! coker(fn) is killed

by ($T )1/p
k
. In fact we’ll only use T

1/pk
. Now, given f 2 K

� ⌦
T

1/p1
↵
/$

m
, we can pick a

minimal representative so that the support diagram lies in the green region in the following

cartoon:

In other words, it lies below the (additive) valuation of $
m

for each monomial T
a
, where

a 2 Z(p). Now an element in K
� ⌦

T
1/p1

↵ ⌦
$n

T

↵�
/$m can be represented by something that

lies in the blue or green area in the following cartoon:



THE RIEMANN EXTENSION THEOREM 7

⇤

Multiplying by some T
a

for a 2 Z(p) moves the blue area into the green area, but if we fix

a small k and large n, it may not shift all the blue into all the green, which would kill the

cokernel as desired. This is why we need the image of a higher n: choosing a higher n would

make the slope of the blue line much steeper, which then controls the total horizontal width

of the blue area. If we choose n large enough, then the horizontal width of the blue area will

eventually be less than p
1/k

, which is what we want. This concludes the proof.
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