
ALMOST PURITY

YVES ANDRÉ

1. Disclaimer

This is the transcription of a lecture given by Yves André for the MSRI Hot Topics Workshop
on the homological conjectures. Any errors or typos are my responsibility1.

This lecture states and gives a very rough sketch of the proof of almost purity theorem in
general characteristic.

2. Statement

Let K be a perfectoid field, m = K�� ✓ K� ✓ K be the maximal ideal in the ring of power
bounded elements in the field, and $ 2 m be a pseudo-uniformizer satisfying |p| < |$| <
1.

2.1. Theorem. Let A be a perfectoid K-algebra, and let B be a finite étale A-algebra. Then

(1) B is perfectoid.

(2) (almost purity) B�
is an almost finite étale A�

-algebra.

Furthermore, if Afét is the category of finite étale A-algebras, then tilting gives an equivalence

of categories bewteen

Afét ⇠= A[
fét.

Tate proved this for some perfectoid fields. Faltings proved this for some (many) perfectoid
algebras, and it was proved in full generality by Scholze and Kedlaya-Liu independently.

3. Reduction to the Galois case

We will show (i) =) (ii). The idea is reduce to the Galois case, i.e. the case where BG = A
for some finite group G acting on B, and

B⌦A B
⇠�!

Y

G

B

sending b ⌦ b0 7! (g(b)b0) is an isomorphism. It’s well known that if B is G-Galois over A,
then B is finite étale over A. The idea is that the isomorphism gives you some idempotent
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element in B ⌦A B, which kills the kernel of multiplication B ⌦A B ! B, which you can
then use to show that B is finite projective over A, from which we can reduce the result. An
analogous result holds in the almost setting, as noted in [1].

Now we reduce the Galois situation. After decomposing A, one can assume that the rank
[B : A] = n is constant. If X = SpecA and Y = SpecB and Z = Y ⇥X · · ·⇥X Y \D where
D is the partial diagonals, then in fact Z = SpecC for some C, which is Sn-Galois over X
and Sn�1-Galois over Y , both via the first projection.

Then an application of faithfully flat descent reduces us to the Galois case fully.

Now assume (i). By assumption we have B⌦
V

AB ⇠=
Q

G B, and B is perfectoid, so B⌦B is
perfectoid as well. Additionally, the map

B�⌦
V

A�B� ⇠�! (B⌦
V

AB)�

is an almost isomorphism. But by the decomposition we get

B�⌦
V

A�B� ⇠�! (B⌦
V

AB)� =
Y

G

B�,

So we almost have what we want, except for the completion in the tensor product. But we
can get around this by taking a quotient by $, and one can deduce that B�/$ is almost
Galois over A�/$, hence almost finite étale. Finally, one can deduce that B� is finite étale
over A�.

4. Proof of (i)

The proof is done in seven steps. We will sketch, very roughly, each one.

(1) First, we look at perfectoid fields. But this is already done: if A is a field, then
GA

⇠= GA[ , so finite extensions of A correspond to finite extensions of A[, and one
can show that since extensions of A[ are perfectoid, extensions of GA are as well.

(2) For perfectoid algebras in characteristic p > 0, proving perfectoid-ness is equivalent
to proving that B is perfect and that B� is bounded. Since A is reduced, B is also
reduced. Thus ⌦B/A = 0, so ⌦B/A[Bp] = 0. But any element c in the kernel of the map
B ⌦A[Bp] B

µ�! B has the property that cp = 0. But ⌦B/A[Bp] is this kernel mod itself
squared, and one can deduce that

B⌦A[Bp] B
⇠�! B

is an isomorphism. By a lemma in EGA, one can deduce that A[Bp] ! B is surjective.
This shows that the Frobenius is surjective, so B is perfect.

Now we need to show that B� is bounded. We define B0, a finite sub-A�-algebra of
B such that B = B0[1/$]. Then B0 is contained in the integral closure of A� in B,
which is in turn contained in

B0
0 = {b 2 B : trB/A(bB0) ✓ A�}.
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One has
Ann(B0

0/B0)[1/$] = B,

and there is some power n such that $nB0
0 ✓ B0.

(3) Now look at characteristic 0. Given B[ 2 A[
fét, we have B 2 Afét. To see this, look at

B[�/$[ ⇠= B�/$.

But to check finite étale-ness, it’s enough to check it mod $, and then we can just
use almost purity in characteristic p.

(4) Now we introduce perfectoid spaces. Take X = Spa(A,A�), Y = Spa(B,B�) (so we
get a finite étale map Y ! X), and the tilt X[, defined as usual. Now we want to
show that Y is perfectoid.

Pick x 2 X with corresponding point x[ 2 X[. We have OX,x containing O
+
X,x, which

are both Henselian, and the completed residue field (x) containing the completed
residue field (x)+. Note (x) is perfectoid, and its tilt is (x[). Furthermore,

ker(O+
X,x ! (x)+)

is $-divisible. Then
O

+
X,x

V

[1/$] = (x).

(5) This is the Henselian approximation step.

4.1. Proposition. If R is a flat K�
-algebra, Henselian along $, then

R[$�1]fét
⇠�! (R

V

[$�1])fét

is an equivalence of categories.

4.2. Remark. Consider a smooth R-algebra S, and let Z = SpecS. By the infinites-
imal lifting property of a smooth map, that

Z(R) ! Z(R/$)

is surjective. This is also true in the Henselian case: embed Z ✓ An and construct
the normal bundle to this embedding. Then a neighborhood of the zero section will
be étale over its image in An.

For example, there is a bijection on isomorphism classes fProjR ! fProjR/$. One can
deduce from this that there is a bijection on isomorphism classes of Rfét ! (R/$)fét.

But now only assume that S[$�1] is smooth over R[$�1]. Then you can a approximate
formal solution by real solutions: this is due to Elkik, which uses Newton’s lemma.

Then you get a uniform Mittag-Leffler condition for approximation mod powers of $.

In any case, apply the proposition to R = O
+
X,x, to obtain

(O+
X,x[$

�1])fét
⇠�! (x)fét.
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But the left hand side is a 2-colimit (over rational subsets U containing x) of OX(U)fét.
Additionally, we have the same equivalence in the tilted case, between (x[) and the
2-colimit of the (OX[(U [))fét for U [ containing x[.

(6) Now we untilt, by taking the 2-colimit over the U [ containing x[ of OX[(U [)fét, then
untilting each object in the result colimit category, so we get objects which are per-
fectoid in characteristic 0. Now by step 3, we have

OX[(U [)]fét ✓ (OX(U))fét.

Now fix B 2 Afét = OX(X)fét, and define B|U = B ⌦A OX(U) 2 OX(U)fét. Then by
cofinality, there exists U [ such that B|U ⇠= (OX[(V [))] for some V [ finite étale over
U [.

by using quasi compactness of X, we can find a finite cover X =
S
Ui such that

B⌦A OX(Ui) = OX(V
[
i )

]

for some V [
i 2 (U [

i )fét.

(7) The last step is gluing. We can glue the V [
i to get an affinoid perfectoid V [ over X[.

For this, we need Noetherian approximation.

Now we untilt to get Y ◆ X ✓ V . Both Y and V are finite étale, and V is perfectoid,
so we need to show that Y = V to show that Y is perfectoid. For this, we appeal to
Tate acyclicity for X and V .

For X, we get

A !
M

i

OX(Ui) !
M

i<i0

OX(Ui \ Ui0) ! · · ·

Tensoring with B over A and using Tate acyclicity for V , we get

B
L

i B⌦A OX(Ui)
L

i<i0 B⌦A OX(Ui \ Ui0) · · ·

O(V )
L

i OV (Vi)
L

i<i0 B⌦A OV (Vi \ Vj) · · ·

where the second two columns are isomorphic, so we get B = OV , and thus B is
perfectoid.

This concludes the proof. To finish, we give a non-example, for p = 2.

Let K = Q2(µ21). Let

A� =
S

k

V

Z2[µ
k
2][[x

2�k
]]

and A = A�[1/2], which is perfectoid over K. Then let

B = A[
p
x2 + 4,
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which is finite and ramified over A. The claim is that B is not perfectoid. For instance,
i+ 1

2
(
p
x2 + 4�

p
x) 2 B�,

but has no square root mod 2.
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