ALMOST PURITY

YVES ANDRE

1. DISCLAIMER
This is the transcription of a lecture given by Yves André for the MSRI Hot Topics Workshop
on the homological conjectures. Any errors or typos are my responsibility’.

This lecture states and gives a very rough sketch of the proof of almost purity theorem in
general characteristic.

2. STATEMENT

Let K be a perfectoid field, m = K°° C K° C K be the maximal ideal in the ring of power
bounded elements in the field, and @w € m be a pseudo-uniformizer satisfying |p| < |w| <
1.

2.1. Theorem. Let A be a perfectoid K-algebra, and let B be a finite étale A-algebra. Then
(1) B is perfectoid.
(2) (almost purity) B° is an almost finite étale A°-algebra.

Furthermore, if A is the category of finite étale A-algebras, then tilting gives an equivalence

of categories bewteen
Ap =2 Al

Tate proved this for some perfectoid fields. Faltings proved this for some (many) perfectoid
algebras, and it was proved in full generality by Scholze and Kedlaya-Liu independently.

3. REDUCTION TO THE GALOIS CASE
We will show (i) == (ii). The idea is reduce to the Galois case, i.e. the case where B¢ = A
for some finite group G acting on B, and
BoaB S [[B
€]
sending b ® O’ +— (g(b)b') is an isomorphism. It’s well known that if B is G-Galois over A,
then B is finite étale over A. The idea is that the isomorphism gives you some idempotent
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element in B ®4 B, which kills the kernel of multiplication B ®4 B — B, which you can
then use to show that B is finite projective over A, from which we can reduce the result. An
analogous result holds in the almost setting, as noted in [1].

Now we reduce the Galois situation. After decomposing A, one can assume that the rank
[B: A] = n is constant. If X = SpecA and Y =SpecB and Z =Y Xxx --- xx Y \ D where
D is the partial diagonals, then in fact Z = Spec C' for some C', which is S,,-Galois over X
and S,,_1-Galois over Y, both via the first projection.

Then an application of faithfully flat descent reduces us to the Galois case fully.

Now assume (i). By assumption we have B&4B = [Io B, and B is perfectoid, so B&s is
perfectoid as well. Additionally, the map

B°RaoB° S (BR4B)°
is an almost isomorphism. But by the decomposition we get

B Rpe B =5 (BRAB)° H3°

So we almost have what we want, except for the completlon in the tensor product. But we
can get around this by taking a quotient by w, and one can deduce that B°/w is almost
Galois over A°/w, hence almost finite étale. Finally, one can deduce that B° is finite étale
over A°.

4. PROOF OF (I)

The proof is done in seven steps. We will sketch, very roughly, each one.

(1) First, we look at perfectoid fields. But this is already done: if A is a field, then
G4 = Gy, so finite extensions of A correspond to finite extensions of A”, and one
can show that since extensions of A’ are perfectoid, extensions of G4 are as well.

(2) For perfectoid algebras in characteristic p > 0, proving perfectoid-ness is equivalent
to proving that B is perfect and that B° is bounded. Since A is reduced, B is also
reduced. Thus Q3,4 = 0, so Q2g/48,) = 0. But any element ¢ in the kernel of the map

B ®aqsr) B £ B has the property that ¢® = 0. But Qg /a[r) is this kernel mod itself
squared, and one can deduce that

B X A[Br] BB
is an isomorphism. By a lemma in EGA, one can deduce that A[B?P] — B is surjective.
This shows that the Frobenius is surjective, so B is perfect.

Now we need to show that B° is bounded. We define By, a finite sub-A°-algebra of
B such that B = By[l/w]|. Then By is contained in the integral closure of A° in B,
which is in turn contained in

={be B:trg/A(beo) C A%}
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One has
Ann(B;/Bo)[1/=]| = B,
and there is some power n such that @w"B{ C B,.
Now look at characteristic 0. Given B” € A%, we have B € Ag. To see this, look at
B /w’ =2 B°/w.

But to check finite étale-ness, it’s enough to check it mod w, and then we can just
use almost purity in characteristic p.

Now we introduce perfectoid spaces. Take X = Spa(A,A°), Y = Spa(B,B°) (so we
get a finite étale map Y — X), and the tilt X”, defined as usual. Now we want to
show that Y is perfectoid.

Pick z € X with corresponding point 2 € X°. We have O, containing O »» Which
are both Henselian, and the completed residue field x(z) containing the completed
residue field x(z)". Note () is perfectoid, and its tilt is x(2"). Furthermore,

ker(ﬁ;yx — k(z)")
is w-divisible. Then -
0% ol1/@] = K(z).
This is the Henselian approximation step.
4.1. Proposition. If R is a flat K°-algebra, Henselian along w, then
Rlw ™ = (Rl ™)
15 an equivalence of categories.

4.2. Remark. Consider a smooth R-algebra S, and let Z = Spec S. By the infinites-
imal lifting property of a smooth map, that

Z(R) — Z(R/w)

is surjective. This is also true in the Henselian case: embed Z C A™ and construct
the normal bundle to this embedding. Then a neighborhood of the zero section will
be étale over its image in A".

For example, there is a bijection on isomorphism classes fProjp — fProjg,. One can
deduce from this that there is a bijection on isomorphism classes of Ry — (R/@)gss.

But now only assume that S[cw™!] is smooth over R[w™!]. Then you can a approximate
formal solution by real solutions: this is due to Elkik, which uses Newton’s lemma.

Then you get a uniform Mittag-Leffler condition for approximation mod powers of w.

In any case, apply the proposition to R = ﬁ;w to obtain

(O% a [ st = F(2)ser



ALMOST PURITY 4

But the left hand side is a 2-colimit (over rational subsets U containing ) of Ox (U ).
Additionally, we have the same equivalence in the tilted case, between x(2”) and the
2-colimit of the (Oy:(U”))g for U’ containing 2.

(6) Now we untilt, by taking the 2-colimit over the U’ containing 2” of @y, (U), then
untilting each object in the result colimit category, so we get objects which are per-
fectoid in characteristic 0. Now by step 3, we have

ﬁXb(Ub)gét - (ﬁX(U))fét'

Now fix B € Ay = Ox(X)ger, and define Bly = B @4 Ox(U) € Ox(U)g. Then by
cofinality, there exists U” such that B|y = (O (V?))? for some V"’ finite étale over
U,

by using quasi compactness of X, we can find a finite cover X = | JU; such that
B @4 Ox(Ui) = Ox (V)
for some V;’ € (U})g.

(7) The last step is gluing. We can glue the V} to get an affinoid perfectoid V” over X”.
For this, we need Noetherian approximation.

Now we untilt to get Y O X C V. Both Y and V are finite étale, and V' is perfectoid,
so we need to show that Y = V to show that Y is perfectoid. For this, we appeal to
Tate acyclicity for X and V.

For X, we get
A= P oxU) - @oxUnUy) — -
i 1<’

Tensoring with B over A and using Tate acyclicity for V', we get

B— ®ZB®‘A ﬁX<Uz) — ®i<i’B®A ﬁx(UiﬂUi/) —_— s

o) ——— @, Ov(V) ——— B,y BOu Oy (Vin V) — -

i<d/

where the second two columns are isomorphic, so we get B = 0y, and thus B is
perfectoid.

This concludes the proof. To finish, we give a non-example, for p = 2.
Let K = Qga(po~). Let
A = UnZalis][[* 7]
and A = A°[1/2], which is perfectoid over K. Then let
B = AV2? + 4,
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which is finite and ramified over A. The claim is that B is not perfectoid. For instance,

4+ 1
Z; (V22 + 14— /7)€ B,

but has no square root mod 2.
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