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1. Disclaimer

This is the transcription of a lecture given by Karl Schwede for the MSRI Hot Topics Work-
shop on the homological conjectures. Any errors or typos are my responsibility1.

This lecture concerns singularities in characteristic zero, followed by singularities in mixed
characteristic, and how big Cohen-Macaulay algebras will play into these areas going forward.
This is joint work with Linquan Ma.

2. Characteristic 0

Suppose X is a normal variety over C, and say x 2 X is a singularity. One of the first
questions one tends to ask is whether x is a rational singularity.

Definition 2.1. If we look locally, we can say X = SpecOX,x, and take
eX ⇡�! X

a resolution of singularities. Then for our purposes, X has rational singularities if
R⇡⇤O eX = OX .

More concretely, this is same as saying that X is normal (i.e. ⇡⇤O eX = OX) and the higher
direct images vanish.

Example 2.2. Say L is a locally free sheaf of finite rank on a projective variety X with
rational singularities (locally, as in the definition). Then H

i(X,L ) = H
i( eX, ⇡⇤L ). In other

words, with rational singularities, you can compute cohomology of a locally free sheaf by
doing it on the resolution.

Here’s another definition, which is maybe a bit easier to play with and for us, will be more
useful.

Definition 2.3 (Kempf [8]). X has rational singularities if X is Cohen-Macaulay and
⇡⇤! eX = !X ,

where ! is the dualizing sheaf.
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Remark 2.4. This is a useful characterization, because even if X doesn’t have rational
singularities, we always have

R⇡⇤! eX = ⇡⇤! eX

in characteristic 0.

There is a dual version, in the sense of local duality, which says that we can replace the
condition ⇡⇤! eX = !X by the condition that

H
d

m(OX,x) ! H
d

m((R⇡⇤OX)x)

is an isomorphism, or really it’s enough to show that this is injective.

Example 2.5. One can check that A = C[x, y, z]/(xn + y
n + z

n) has rational singularities if
and only if n  2. In fact this is easy to compute, because one can blow up the singularities
and get concrete descriptions of the dualizing sheaves.

The following theorem of Elkik serves as motivation for what we will do in the rest of the
talk.

Theorem 2.6 (Elkik [4]). Suppose (A,m) is a local Noetherian ring, essentially of finite type
over C, and say f 2 m is a nonzerodivisor. If A/(f) has rational singularities, then A does
as well.

Remark 2.7. This basically says that if a variety X has a singularity x 2 X, then to show
that it’s rational you can just choose a hypersurface going through x and show that it has a
rational singularity at x.

Proof. Let X = SpecA and fix a resolution eX ⇡�! X. Let H = ⇡
⇤
V (f) be the scheme

theoretic pullback, and let eH resolve H. Then we have a diagram

0 A A A/(f) 0

R⇡⇤O eX R⇡⇤O eX R⇡⇤OH

R⇡⇤O eH ,

f

f

Now using local cohomology and vanishing we get the following diagram with exact rows:



SINGULARITIES MOD p, AND SINGULARITIES IN MIXED CHARACTERISTIC 3

H
d�1
m (A/(f)) H

d

m(A) H
d

m(A)

H
d�1
m (R⇡⇤OH

) H
d

m(R⇡⇤O eX) H
d

m(R⇡⇤O eX)

H
d�1
m (R⇡⇤O eH)

⇠

f

f

We know A/(f) has rational singularities, so H
d�1
m (A/(f)) ! H

d�1
m (R⇡⇤OH

) is injective.
Furthermore the dual of Grauer-Riemann vanishing tells us that the lower local cohomology
of R⇡⇤O eX vanishes, so H

d�1
m (R⇡⇤OH

) ! H
d

m(R⇡⇤O eX) is injective.

Now take a nonzero class Z 2 H
d

m(A), and assume it goes to 0 under the map H
d

m(A)
f�! H

d

m(A)
(we can do this since all elements in H

d

m(A) are torsion). But by exactness Z comes from
a nonzero element in H

d�1
m (A/(f)). By injectivity, its image in H

d

m(R⇡⇤O eX) can’t be zero.
This concludes the proof, along with the fact that A/(f) Cohen-Macaulay =) A Cohen-
Macaulay. ⇤

3. Characteristic p

The following analogous definition is due to Karen Smith.

Definition 3.1 (Smith [11]). Now let (A,m) be a excellent local Noetherian ring in charac-
teristic p > 0. This is said to have F -rational singularities if

(1) A is Cohen-Macaulay and

(2) If N ✓ H
d

m(A) is such that F (N) ✓ N (F is Frobenius), then either N = 0 or
N = H

d

m(A).

Remark 3.2. Why is this useful? Say we have X = SpecA as in the definition and a
birational map eX ! X, which could be a resolution of singularities, for example. Then we
get a map

' : Hd

m(A) ! H
d

m(R⇡⇤O eX).

Let K = ker'. Note Frobenius is compatible with this map, so whatever the kernel is
automatically satisfies condition (2), i.e. F (K) ✓ K, so then either K = 0 or everything.
But since eX ! X is birational ' can’t be zero, so ' is injective.

We now have a powerful theorem which lets us reduce mod p and check rationality of singu-
larities.

Theorem 3.3 (Smith [11]). Say A is a variety over Q in characteristic 0. Suppose that after
reduction to characteristic p >> 0, we get Ap having F -rational singularities. Then A has
rational singularities.
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Theorem 3.4 (Hara [5], Mehta-Srinivas [10]). The converse holds on a Zariski open set of
p in SpecZ.

Furthermore, we have an analog of Elkik’s theorem in characteristic p.

Theorem 3.5 (Fedder-Watanabe). If (A,m) is local Noetherian in characteristic p and A/(f)
has F -rational singularities, then so does A.

4. Mixed Characteristic

We want analogs of these theorems in mixed characteristic. We’ll use (integral perfectoid)
big Cohen-Macaulay algebras.

Definition 4.1. Say (A,m) is a complete local Noetherian domain of mixed characteristic
(0, p). Then A has BCM-rational singularities if

(1) A is Cohen-Macaulay

(2) H
d

m(A) ! H
d

m(B) is injective for all big Cohen-Macaulay A-algebras B.

Remark 4.2. In characteristic p, BCM-rational is the same as F -rational. In characteristic p,
note that F -rationality can be computed on a computer, which are implemented in Macaulay
2! So if you are in mixed characteristic p, and you are lucky enough to have something to
mod out by, you can just run a computer program and prove BCM-rationality.

This looks similar to the previous definitions, but now we replace the R⇡⇤O eX with a big
Cohen-Macaulay algebra. But there is a fundamental reason why this is a good idea: in
chaacteristic zero, R⇡⇤O eX is “like a big Cohen-Macaulay algebra”, in the sense that

H
i

m(R⇡⇤O eX) = 0 for all i < d.

It’s worth mentioning that we have no idea whether this is independent of the choice of big
(integral perfectoid?) Cohen-Macaulay algebra.

However, we do know the following.

Theorem 4.3 (Ma-Schwede). For all birational ⇡ : eX ! X = SpecA, there exists B, a big
Cohen-Macaulay A-algebra, such that

ker(Hd

m(A) ! H
d

m(B)) ◆ ker(Hd

m(A) ! H
d

m(R⇡⇤O eX)).

So we really do want to work with big Cohen-Macaulay algebras: BCM rational implies
rational in any other sense you want.

Theorem 4.4 (Ma-Schwede). Suppose (A,m) is a complete local Noetherian ring of mixed
characteristic (0, p), and say f 2 m is a nonzerodivisor. If A/(f) has BCM-rational singu-
larities, then A does as well.
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Proof. The proof is virtually the same as that of Theorem 2.6, except that instead of just
having existence of big Cohen-Macaulay algebras, you need weakly functorial big Cohen-
Macaulay algebras. Then we use a similar diagram like

H
d�1
m (A/(f)) H

d

m(A) H
d

m(A)

H
d�1
m (B/fB) H

d

m(B) H
d

m(B)

f

f

and repeat the proof basically word for word. ⇤
Theorem 4.5 (Ma-Schwede). If q 2 SpecA for A a ring of finite type over Q, and we take
a model AZ over Z and a corresponding prime qZ, then if p 2 Z is such that (p) + qZ 6= AZ

and (AZ,qZ)/p is F -rational, then Aq is rational.

Pictorially, this says that if the point in the intersection in the above picture has F -rational
singularities, then in fact this point in mixed characteristic is BCM-rational. Then after
further localization, it’s also rational in characteristic 0.

One can define a test ideal thing for BCM algebras

⌧B(R,�),

and you get ⌧B(R,�) ✓ J(R,�). You also get a restriction theorem, which is basically a
jazzed up version of Elkik’s theorem.

You also get transformation rules under finite maps as well, which give you “arithmetic”
applications, which we briefly discuss now. In particular, if A/f is BCM-regular and A is
q-Gorenstein, then (A, f 1�✏) is BCM-regular for all ✏ 2 (0, 1). This implies that if A ! B
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is finite étale generically Galois complete normal domain over A[f�1] and tamely ramified in
codimension 1, then it’s tamely ramified everywhere.
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