BIG CM MODULES, MORPHISMS OF PERFECT COMPLEXES, INTERSECTION THEOREMS

LUCHEZAR AVRAMOV

1. DISCLAIMER

This is the transcription of a lecture given by Luchezar Avramov for the MSRI Hot Topics Workshop on the homological conjectures. Any errors or typos are my responsibility¹.

This lecture concerns new derivations of some of the classical consequences of the existence of big Cohen-Macaulay modules, and new relations between the theorems involved in the homological conjectures. This is Joint work with Srikanth Iyengar and Amnon Neeman.

2. INTRODUCTION

Let (R, \mathfrak{m}, k) be a Noetherian local ring with unity. The Improved New Intersection Conjecture (INIT), proven in [3], says

Theorem 2.1. Given a complex of finite free *R*-modules

$$\mathcal{F} = 0 \to F_d \to \cdots \to F_0 \to 0$$

such that

(1) $\mathfrak{m}^{n}H_{i}(F) = 0$ for i > 0, and

(2) There exists $z \in H_0(\mathfrak{F}) \setminus \mathfrak{m} H_0(\mathfrak{F})$ such that $\mathfrak{m}^n z = 0$.

Then $d \geq \dim R$.

The original proof in [3], is done using big Cohen-Macaulay modules. Hochster, in [4] showed that it also follows from the Canonical Element Conjecture (CEC). Dutta in t[2] showed that in fact, CEC \iff INIT.

Remark 2.2. We actually have $d = \dim R$ for the Koszul complex $K(\mathbf{x})$ where \mathbf{x} is a system of parameters for R.

We want to show that the statement of the theorem can be improved. In particular, we will change the length d of the complex as a parameter in the theorem.

Date: March 16, 2018.

¹Typeset by Ashwin Iyengar (aiyengar@berkeley.edu)

3. Perfect Complexes

Definition 3.1. Let R be a ring and \mathcal{F} be a bounded complex of R-modules. We define level^R(\mathcal{F}) to be the minimal number of extensions which are necessary to build \mathcal{F} from complexes of finitely generated projective modules with zero differential maps.

This is motivated from Beilinson-Bernstein-Deligne's way of building thick subcategories of derived categories.

Proposition 3.2.

 $\operatorname{level}^{R}(\mathcal{F}) = \inf\{n \in \mathbf{N} : F \simeq Q \text{ with a semi-projective filtration}\},\$

where $F \simeq Q$ is taken in the derived category, and Q is a direct summand of a complex P with a semi-projective filtration, i.e. a sequence

$$0 = P_0 \subseteq P_1 \subseteq \ldots \subseteq P_\ell = P$$

such that P_i/P_{i-1} is a complex of finitely generated projective modules with 0 differentials.

Now in the INIT, our new statement, following [1], is

Theorem 3.3.

$$\operatorname{level}^{R}(\mathcal{F}) - 1 \geq \dim R.$$

Example 3.4.

- (1) If \mathcal{F} is a minimal projective resolution of a finitely generated *R*-module *M*, then $\operatorname{level}^{R}(\mathcal{F}) = \operatorname{pd}(M) + 1$.
- (2) $\operatorname{level}^{R}(\mathcal{F}) \leq \operatorname{span}(\mathcal{F}) + 1.$
- (3) $\operatorname{span}(\mathcal{F}) \operatorname{level}^{R}(\mathcal{F})$ can be arbitrarily large.

Definition 3.5. A ghost map in D(R) is a map $f: X \to Y$ with $H_i(f) = 0$ for all *i*.

Definition 3.6. A complex $X \in D(R)$ is *I*-torsion for some ideal $I \subseteq R$ if every element of H(X) is annihilated by some power of *I*.

Remark 3.7. There exists a map of complexes $t : R\Gamma_I(X) \to X$ for every X where $R\Gamma_I(X)$ is an *I*-torsion complex and t universal for such a map.

Proposition 3.8. Let C be a balanced big Cohen-Macaulay R-module for a local Noetherian R. Then

- (1) $t : R\Gamma_I C \to C$ is a composition of c ghosts, where c is the height of the the ideal I, for any ideal $I \subseteq R$.
- (2) (Ghost Lemma) If $g : G \to C$ factors through $G \to X \to C$ with X an I-torsion complex and level^R(G) $\leq c$, then g = 0 in D(R).

Proof. We will prove (1). We can assume $I = (x_1, \ldots, x_c)$ where x_1, \ldots, x_c is part of a system of parameters for R. We have

$$R\Gamma_{x_1,\dots,x_c}(C) \to R\Gamma_{x_1,\dots,x_{c-1}}(C) \to \dots \to R\Gamma_{x_1}(C) \to C.$$

Since the x_i are part of a system of parameters, $H(R\Gamma_{x_1,\ldots,x_i})$ lives in degree *i*. Then clearly the maps are ghosts.

Definition 3.9. A map $\mathcal{G} \to \mathcal{F}$ of complexes of *R*-modules is called tensor-nilpotent if there exists an *n* such that $f^{\otimes^{\mathbf{L}_n}} : \mathcal{G}^{\otimes^{\mathbf{L}_n}} \to \mathcal{G}^{\otimes^{\mathbf{L}_n}}$ is zero.

We will need the following result from homotopy theory, proved in [5] and [6].

Theorem 3.10 (Hopkins, Neeman). If \mathcal{F} and \mathcal{G} are perfect complexes of *R*-modules, then tensor nilpotence of $f: \mathcal{G} \to \mathcal{F}$ is the same as being fiberwise-zero, i.e.

 $\kappa(\mathfrak{p}) \otimes f : \kappa(\mathfrak{p}) \otimes_R G \to \kappa(\mathfrak{p}) \otimes_R \mathcal{F}$

is a ghost map for all $\mathfrak{p} \in \operatorname{Spec} R$.

Theorem 3.11. Let $f : \mathfrak{G} \to \mathfrak{F}$ be a morphism of perfect complexes of *R*-modules and let $I \subseteq R$ be an ideal. Then if

- (1) f factors through a complex X with H(X) I-torsion and
- (2) $\operatorname{level}^{R}(\operatorname{Hom}(\mathfrak{G},\mathfrak{F})) \leq \operatorname{ht} I$,

then f is fiberwise zero, hence tensor nilpotent.

Proof Sketch. First reduce to the case when $\mathcal{F} = R$, by using basic properties of level^{*R*}. Next, reduce to the case where $R = (R, \mathfrak{m}, k)$ is local and $\mathfrak{p} = \mathfrak{m}$, and assume that *I* is \mathfrak{m} -primary. Then we have to deal with

 $\mathcal{G} \xrightarrow{f} R,$

which factors through some X as $\mathcal{G} \to X \to R$. Note we have a big Cohen-Macaulay module C with a surjection $C \to k$. So lift the map $R \to k$ to a map $R \to C \to k$. This now gives a diagram

By Proposition 3.8, the map $G \to X \to R \to C$ is zero. There is a map

$$H(G \otimes k) \to H(R \otimes k) \to H(k \otimes k)$$

This is 0, and $H(R \otimes k) \to H(k \otimes k)$ is an isomorphism, thus $H(f \otimes k) = 0$.

4. Applications

We have the first following interpretation.

Theorem 4.1 (Morphic Intersection Theorem). Suppose R is Noetherian and $f : \mathfrak{G} \to \mathfrak{F}$ is a morphism of perfect complexes. If f is not fiberwise zero, and factors through some X with I-torsion homology for some I, then

 $\operatorname{span}(\mathcal{F}) + \operatorname{span}(\mathcal{G}) \ge \operatorname{level}^R(\operatorname{Hom}_R(\mathcal{G},\mathcal{F})) \ge \operatorname{ht} I + 1.$

The first part is an easy lemma, the second inequality follows from Theorem 3.11. Next, we have

Theorem 4.2 (Canonical Element Conjecture). Let R be a local Noetherian ring, and \underline{x} be a system of parameters, with \mathcal{F} a perfect complex of R-modules, with $f : K(\underline{x}) \to \mathcal{F}$ has $H_0(k \otimes f) \neq 0$, where K is the Koszul complex.

Then $H_{\dim R}(S \otimes f) \neq 0$ with $S = R/\underline{x}$.

As a corollary, we obtain

Corollary 4.3. If \underline{x} is as before and $\underline{x} \subseteq (\underline{y})$ for some \underline{y} , so for example $A\underline{y} = \underline{x}$, then the $d \times d$ minor ideal

 $I_d(A) \not\subseteq (\underline{x}).$

For example, if we take $x_i = y_i^n$ where y_1, \ldots, y_d is a system of parameters for R, then this corollary recovers the monomial conjecture in the classical form.

References

- L. Avramov, S. Iyengar, and A. Neeman, Big Cohen-Macaulay modules, morphisms of perfect complexes, and intersection theorems in local algebra, preprint, 2017, arXiv: 1711.04052 [math.AC].
- [2] S. Dutta, On the Canonical Element Conjecture. Transactions of the American Mathematical Society 299, no. 2 (1987): 803-11.
- [3] E. Evans and P. Griffith, The Syzygy Problem. Annals of Mathematics, Second Series, 114, no. 2 (1981): 323-33. doi:10.2307/1971296.
- [4] M. Hochster, Canonical elements in local cohomology modules and the direct summand conjecture. Journal of Algebra, Volume 84, Issue 2, 1983, 503-553.
- [5] M. Hopkins, Global methods in homotopy theory, Homotopy theory (Durham, 1985), London Math. Soc. Lecture Note Ser. 117 Cambridge Univ. Press, Cambridge, 1987, 73–96.
- [6] A. Neeman, The chromatic tower of D(R), Topology 31 (1992), 519–532.