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Overview

@ Langlands correspondence

© Global Langlands parameterization

© Local Langlands parameterization
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o F global field (e.g F = Q or F =TFp(t)) with Galois group Ir.
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Langlands correspondence

o F global field (e.g F = Q or F =TFp(t)) with Galois group Ir.
@ F, the completion of F at a place v, with Galois group I, .

e O, ring of integers, w, a uniformizer, k, residue field.

o A =[] F, the ring of adeles of F.
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Langlands correspondence

F global field (e.g F = Q or F = F,(t)) with Galois group I'r.
F, the completion of F at a place v, with Galois group lF,.
O, ring of integers, w, a uniformizer, k, residue field.

A =[] F. the ring of adeles of F.

G a connected reductive group over F.
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F global field (e.g F = Q or F = F,(t)) with Galois group I'r.
F, the completion of F at a place v, with Galois group lF,.
O, ring of integers, w, a uniformizer, k, residue field.

A =[] F. the ring of adeles of F.

G a connected reductive group over F.

Ag = C(G(F)\G(A),C) space of automorphic forms, as a
G(A)-representation.

7 irreducible automorphic representation of G (irreducible
smooth representation of G(A) “appearing” in Ag).
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Langlands correspondence

o F global field (e.g F = Q or F =TFp(t)) with Galois group Ir.
F, the completion of F at a place v, with Galois group lF,.
O, ring of integers, w, a uniformizer, k, residue field.

A =[] F. the ring of adeles of F.

G a connected reductive group over F.

Ag = C(G(F)\G(A),C) space of automorphic forms, as a
G(A)-representation.

7 irreducible automorphic representation of G (irreducible
smooth representation of G(A) “appearing” in Ag).

o Ag =Ilimx C(G(F)\G(A)/K,C), on which the Hecke algebra
Tk = C.(K\G(A>®)/K,C) acts by convolution, where K runs
over open compact subgroups of G(A>).
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Langlands correspondence

o G the dual group associated to G over C.
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o G the dual group associated to G over C.

G TGL, | SL, | SOam1 | SO | s
G GLn PGLn Sp2n SO2n Eg

Canonical construction uses the geometric Satake equivalence.
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Langlands correspondence

o G the dual group associated to G over C.

G | GL, | SL, | SO2py1 | SOz, | Es

G GLn PGLn Sp2n SO2n Eg
Canonical construction uses the geometric Satake equivalence.

o LG = G x Gal(F/F) the L-group, where F is the splitting
field of G.
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Langlands correspondence

o G the dual group associated to G over C.

G | GL, | SL, | SO2py1 | SOz, | Es

G GLn PGLn Sp2n SO2n Eg
Canonical construction uses the geometric Satake equivalence.

o LG = G x Gal(F/F) the L-group, where F is the splitting
field of G.

e LG, local L-group. For almost all places v,
LG, .= G x (Frob, ).
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Langlands correspondence

Langlands Correspondence (very rough form)

A very rough form of the Langlands correspondence can be
summarized as follows:
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Langlands Correspondence (very rough form)

A very rough form of the Langlands correspondence can be
summarized as follows:

There exists a pro-algebraic group Lg, which would be an
extension of ' by a connected pro-reductive group, such that:
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Langlands correspondence

Langlands Correspondence (very rough form)

A very rough form of the Langlands correspondence can be
summarized as follows:

There exists a pro-algebraic group Lg, which would be an
extension of ' by a connected pro-reductive group, such that:

There is a natural bijection between two sets

{Automorphic representations 7 of G}
> {Langlands parameters ¢ : Lr — -G up to @—conjugacy},

matching the spectral data arising from the action of Ty on 7K,

and the arithmetic data arising from ¢.
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Langlands correspondence

Hecke eigensystem

To formulate Langlands correspondence more precisely, we need to
recall a few ingredients.
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Hecke eigensystem

To formulate Langlands correspondence more precisely, we need to
recall a few ingredients.

(1) For almost all places v of F, G(F,) contains a natural
hyperspecial subgroup G(O,).
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Langlands correspondence

Hecke eigensystem

To formulate Langlands correspondence more precisely, we need to
recall a few ingredients.

(1) For almost all places v of F, G(F,) contains a natural
hyperspecial subgroup G(O,).

(2) Every automorphic representation decomposes as restricted

tensor product
/
=@
v

with each m, an irreducible representation of G(F,), and for

almost all v, dim 775(0”) =1;
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Langlands correspondence

Hecke eigensystem

(3) Satake isomorphism (depending on the choice /fk, € C)
Sat, : T, := C.(G(OL)\G(F,)/G(O,)) = C[& Frob,]C,

where (C[@ Frobv](j is the algebra of conjugate invariant
functions on G Frob, C LG,.
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Langlands correspondence

Hecke eigensystem

(3) Satake isomorphism (depending on the choice /fk, € C)
Sat, : T, := C.(G(OL)\G(F,)/G(O,)) = C[& Frob,]C,

where (C[@ Frobv](j is the algebra of conjugate invariant
functions on G Frob, C LG,.

From (1)-(3), we see that for an irreducible automorphic
representation ,
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Langlands correspondence

Hecke eigensystem

(3) Satake isomorphism (depending on the choice /fk, € C)
Sat, : T, := C.(G(OL)\G(F,)/G(O,)) = C[& Frob,]C,

where (C[@ Frobv](j is the algebra of conjugate invariant
functions on G Frob, C LG,.

From (1)-(3), we see that for an irreducible automorphic
representation 7, and for almost all v,
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Langlands correspondence

Hecke eigensystem

(3) Satake isomorphism (depending on the choice /fk, € C)
Sat, : T, := C.(G(OL)\G(F,)/G(O,)) = C[& Frob,]C,

where (C[@ Frobv](j is the algebra of conjugate invariant
functions on G Frob, C LG,.

From (1)-(3), we see that for an irreducible automorphic
representation 7, and for almost all v, T, acts on w‘,G(OV) by a

character, giving a semisimple conjugacy class c(m,) C LG, .
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Langlands correspondence

Hecke eigensystem

(3) Satake isomorphism (depending on the choice /fk, € C)
Sat, : T, := C.(G(OL)\G(F,)/G(O,)) = C[& Frob,]C,

where (C[@ Frobv](j is the algebra of conjugate invariant
functions on G Frob, C LG,.

From (1)-(3), we see that for an irreducible automorphic
representation 7, and for almost all v, T, acts on w‘,G(OV) by a

character, giving a semisimple conjugacy class c(m,) C LG, .

The collection {c(m,)}, is called the Hecke eigensystem attached
to 7.
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Langlands correspondence

Automorphic Langlands group

If F is a number field, the nature of Lf is unclear, and its
existence probably could well turn out to be the final theorem in
the subject (according to Arthur).
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Automorphic Langlands group

If F is a number field, the nature of Lf is unclear, and its
existence probably could well turn out to be the final theorem in
the subject (according to Arthur).

It should have the (complexified) motivic Galois group G of F as
a quotient, which (for F = Q) would be the extension of the
Taniyama group by a pro-semisimple simply-connected group.
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Langlands correspondence

Automorphic Langlands group

If F is a number field, the nature of Lf is unclear, and its
existence probably could well turn out to be the final theorem in
the subject (according to Arthur).

It should have the (complexified) motivic Galois group G of F as
a quotient, which (for F = Q) would be the extension of the
Taniyama group by a pro-semisimple simply-connected group.

If F is a function field, L should be equal to Gr, which was
constructed unconditionally by Drinfeld. (But the construction
uses the Langlands correspondence.)
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Langlands correspondence

Galois representation

The set of homomorphisms ¢ : Gr — LG up to conjugacy can be
replaced by (depending on a choice ¢ : C = Q)

{“Geometric” Galois representations ¢ : ['F — LG(@Z)}/@
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Galois representation

The set of homomorphisms ¢ : Gr — LG up to conjugacy can be
replaced by (depending on a choice ¢ : C = Q)

{“Geometric” Galois representations ¢ : ['F — LG(@Z)}/@

Such ¢ determines a collection {¢(Frob, )}, of semisimple
conjugacy classes of LG.
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Langlands correspondence

Galois representation

The set of homomorphisms ¢ : Gr — LG up to conjugacy can be
replaced by (depending on a choice ¢ : C = Q)

{“Geometric” Galois representations ¢ : ['F — LG(@K)}/@

Such ¢ determines a collection {¢(Frob, )}, of semisimple
conjugacy classes of LG.

A general ¢ : Lr — LG gives {¢,(Frob,)} similarly. (For almost
all v, the localized parameter ¢, : L, — LG, is unramified.)
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Langlands correspondence

Langlands correspondence (naive form)

The natural bijection

{Automorphic representations 7 of G}

> {Langlands parameters ¢ : Lr — -G up to @—conjugacy},

is compatible with the map 7 — {c(m,)}, and the map

¢ +— {&(Froby)},.
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Langlands correspondence

Langlands correspondence (naive form)

The natural bijection

{Automorphic representations 7 of G}

> {Langlands parameters ¢ : Lr — -G up to @—conjugacy},

is compatible with the map 7 — {c(m,)}, and the map

¢ +— {&(Froby)},.

The bijection should be compatible at all local places once the
local Langlands correspondence is introduced.
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Langlands correspondence

The conjectural correspondence, stated as above, is just the first
approximation.
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It is close to be precise when G = GL,, and is a theorem in many
cases.
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Langlands correspondence

The conjectural correspondence, stated as above, is just the first
approximation.

It is close to be precise when G = GL,, and is a theorem in many
cases. In particular, for G = GL,, over a function field, the full
Langlands correspondence has been established, thanks to the
work of Drinfeld and L. Lafforgue.
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The conjectural correspondence, stated as above, is just the first
approximation.

It is close to be precise when G = GL,, and is a theorem in many
cases. In particular, for G = GL,, over a function field, the full
Langlands correspondence has been established, thanks to the
work of Drinfeld and L. Lafforgue.

On the contrary, over number fields, although a lot of progresses
have been made, there are still outstanding questions for GL,/Q.
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Langlands correspondence

The conjectural correspondence, stated as above, is just the first
approximation.

It is close to be precise when G = GL,, and is a theorem in many
cases. In particular, for G = GL,, over a function field, the full
Langlands correspondence has been established, thanks to the
work of Drinfeld and L. Lafforgue.

On the contrary, over number fields, although a lot of progresses
have been made, there are still outstanding questions for GL,/Q.

For the group other than GL,, the situation is far more
complicated.
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Langlands correspondence

Element conjugacy v.s. global conjugacy

First, there exists different w and 7’ with the same Hecke
eigensystem, and the Langlands correspondence will not be a
bijection.
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Element conjugacy v.s. global conjugacy

First, there exists different w and 7’ with the same Hecke
eigensystem, and the Langlands correspondence will not be a
bijection. The simplest situation involves the theory of endoscopy.
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Langlands correspondence

Element conjugacy v.s. global conjugacy

First, there exists different w and 7’ with the same Hecke
eigensystem, and the Langlands correspondence will not be a
bijection. The simplest situation involves the theory of endoscopy.

More seriously, there exists Galois representations
$1,¢2 : TE — LG such that ¢1() and ¢2() are conjugate by G
for every v € ' while ¢1, ¢» themselves are not conjugate by G.
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Element conjugacy v.s. global conjugacy

First, there exists different w and 7’ with the same Hecke
eigensystem, and the Langlands correspondence will not be a
bijection. The simplest situation involves the theory of endoscopy.

More seriously, there exists Galois representations
$1,¢2 : TE — LG such that ¢1() and ¢2() are conjugate by G
for every v € ' while ¢1, ¢» themselves are not conjugate by G.

Therefore, the Hecke eigensystem of m does not uniquely
determine the global Langlands parameter ¢ of 7.
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Langlands correspondence

Element conjugacy v.s. global conjugacy

First, there exists different w and 7’ with the same Hecke
eigensystem, and the Langlands correspondence will not be a
bijection. The simplest situation involves the theory of endoscopy.

More seriously, there exists Galois representations
$1,¢2 : TE — LG such that ¢1() and ¢2() are conjugate by G
for every v € ' while ¢1, ¢» themselves are not conjugate by G.

Therefore, the Hecke eigensystem of m does not uniquely
determine the global Langlands parameter ¢ of 7.

Over function fields, V. Lafforgue’s introduced the excursion
algebra as an enlargement of the (unramified) Hecke algebra,
which overcomes this difficulty.
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Global Langlands parameterization

Cohomology of modular varieties

In all known cases, the realizations of the Langlands
correspondence of G use modular varieties associated to G in a
way or another.
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Cohomology of modular varieties

In all known cases, the realizations of the Langlands
correspondence of G use modular varieties associated to G in a

way or another.

For example, H! of the modular curve Xo(N) decomposes as,
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Global Langlands parameterization

Cohomology of modular varieties

In all known cases, the realizations of the Langlands
correspondence of G use modular varieties associated to G in a

way or another.

For example, H! of the modular curve Xo(N) decomposes as,

Hl( QvQZ @Wro ( )7
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Global Langlands parameterization

Cohomology of modular varieties

In all known cases, the realizations of the Langlands
correspondence of G use modular varieties associated to G in a

way or another.

For example, H! of the modular curve Xo(N) decomposes as,

Hl( QaQZ @Wro ( )7

@ 7 ranges over the weight two modular forms;
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Global Langlands parameterization

Cohomology of modular varieties

In all known cases, the realizations of the Langlands
correspondence of G use modular varieties associated to G in a

way or another.

For example, H! of the modular curve Xo(N) decomposes as,

Hl( QaQZ @Wro ( )7

@ 7 ranges over the weight two modular forms;

e W(r) is the multiplicity space of 7 appearing in the
cohomology, which carries on an action of I'g.
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Global Langlands parameterization

Cohomology of modular varieties

In all known cases, the realizations of the Langlands
correspondence of G use modular varieties associated to G in a
way or another.

For example, H! of the modular curve Xo(N) decomposes as,

Hl( Qa@@ @Trro )7

@ 7 ranges over the weight two modular forms;
e W(r) is the multiplicity space of 7 appearing in the
cohomology, which carries on an action of I'g.

e 7 — W(m) realizes part of the Langlands correspondence for

GL,/Q
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Global Langlands parameterization

Cohomology of modular varieties

Note that although Hl(Xo(N)@, Qy) is closely related to Ag by
Matsushima'’s formula, they are of different nature.
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Global Langlands parameterization

Cohomology of modular varieties

Note that although Hl(Xo(N)@, Qy) is closely related to Ag by
Matsushima'’s formula, they are of different nature.

This story generalizes to a (limited) class of other reductive groups
over number fields, for which the corresponding Shimura variety
exists. However, the picture is much more complicated.
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Global Langlands parameterization

Cohomology of modular varieties

Note that although Hl(Xo(N)@, Qy) is closely related to Ag by
Matsushima'’s formula, they are of different nature.

This story generalizes to a (limited) class of other reductive groups
over number fields, for which the corresponding Shimura variety
exists. However, the picture is much more complicated.

For example, the multiplicity space W(7) usually is not the
“native” Galois representation one would expect.
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Global Langlands parameterization

Cohomology of modular varieties

Note that although Hl(Xo(N)@, Qy) is closely related to Ag by
Matsushima'’s formula, they are of different nature.

This story generalizes to a (limited) class of other reductive groups
over number fields, for which the corresponding Shimura variety
exists. However, the picture is much more complicated.

For example, the multiplicity space W(7) usually is not the
“native” Galois representation one would expect. Even it is, it does
not determine the Langlands parameter associated to .

Xinwen Zhu Langlands correspondence over function fields



Global Langlands parameterization

Lafforgue’s theorem: Set-up

The situation is much nicer over functions fields. For simplicity, we
assume that G is split over F.
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Global Langlands parameterization

Lafforgue’s theorem: Set-up

The situation is much nicer over functions fields. For simplicity, we
assume that G is split over F.

e F = k(X) global function field of characteristic p > 0, where
X is a smooth geometrically connected projective curve over a
field k of g elements;

Xinwen Zhu Langlands correspondence over function fields
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Lafforgue’s theorem: Set-up

The situation is much nicer over functions fields. For simplicity, we
assume that G is split over F.

e F = k(X) global function field of characteristic p > 0, where
X is a smooth geometrically connected projective curve over a
field k of g elements;

o E finite extension of Qy (¢ # p) containing a chosen ,/g;
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Global Langlands parameterization

Lafforgue’s theorem: Set-up

The situation is much nicer over functions fields. For simplicity, we
assume that G is split over F.

e F = k(X) global function field of characteristic p > 0, where
X is a smooth geometrically connected projective curve over a
field k of g elements;

o E finite extension of Qy (¢ # p) containing a chosen ,/g;

@ = C Zg(F)\Zg(A) discrete cocompact lattice, where Zg is
the center of G;

Xinwen Zhu Langlands correspondence over function fields



Global Langlands parameterization

Lafforgue’s theorem: Set-up

The situation is much nicer over functions fields. For simplicity, we
assume that G is split over F.

e F = k(X) global function field of characteristic p > 0, where
X is a smooth geometrically connected projective curve over a
field k of g elements;

o E finite extension of Qy (¢ # p) containing a chosen ,/g;

@ = C Zg(F)\Zg(A) discrete cocompact lattice, where Zg is
the center of G;

e K C G(A) open compact;
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Global Langlands parameterization

Lafforgue’s theorem: Set-up

The situation is much nicer over functions fields. For simplicity, we
assume that G is split over F.

e F = k(X) global function field of characteristic p > 0, where
X is a smooth geometrically connected projective curve over a
field k of g elements;

o E finite extension of Qy (¢ # p) containing a chosen ,/g;

@ = C Zg(F)\Zg(A) discrete cocompact lattice, where Zg is
the center of G;

e K C G(A) open compact;
o LG = G is defined over E.
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Global Langlands parameterization

Lafforgue’s theorem: Statement

Theorem (V. Lafforgue)

@ for every finite set |, there is an E-linear functor

H'*P - Rep(G') — Tk[Ik]—Mod;
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Global Langlands parameterization

Lafforgue’s theorem: Statement

Theorem (V. Lafforgue)

@ for every finite set |, there is an E-linear functor

H'*P - Rep(G') — Tk[Ik]—Mod;

@ For every ¢ : | — J, there is a canonical isomorphism of
functors
X : Resy oH[™P = HjusP o Resy,

where Resg, in both sides denote the natural restriction
functors induced by G’ — G' and F,JE — F,’E.
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Global Langlands parameterization

Theorem (Cont'd)

The above two data satisfy the following conditions
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Global Langlands parameterization

Theorem (Cont'd)
The above two data satisfy the following conditions

o Hy*P(1) = Cusp(G(F)=\G(A)/K), where 1 denotes the
trivial representation;
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Global Langlands parameterization

Theorem (Cont'd)
The above two data satisfy the following conditions

o Hy*P(1) = Cusp(G(F)=\G(A)/K), where 1 denotes the
trivial representation;

o The representation 't on H;"*"(W) is continuous and
unramified almost everywhere;
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Global Langlands parameterization

Theorem (Cont'd)
The above two data satisfy the following conditions

o Hy*P(1) = Cusp(G(F)=\G(A)/K), where 1 denotes the
trivial representation;

o The representation 't on H;"*"(W) is continuous and
unramified almost everywhere;

@ Frobenius-Hecke compatibility (to be explained below).
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Global Langlands parameterization

Theorem (Cont'd)
The above two data satisfy the following conditions

o Hy*P(1) = Cusp(G(F)=\G(A)/K), where 1 denotes the
trivial representation;

o The representation 't on H;"*"(W) is continuous and
unramified almost everywhere;

@ Frobenius-Hecke compatibility (to be explained below).

Roughly speaking H;"*"(W) is the (cuspidal) cohomology of
moduli of Shtukas associated to W & Rep(G').
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Global Langlands parameterization

Drinfeld O-module

Given the system of functors {H,} as in the above theorem,
Lafforgue constructed the action of a large commutative algebra
(so-called excursion algebra) on each H;(W).
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Global Langlands parameterization

Drinfeld O-module

Given the system of functors {H,} as in the above theorem,
Lafforgue constructed the action of a large commutative algebra
(so-called excursion algebra) on each H;(W).

The spectral decomposition with respect to this action exactly
gives the sought-after Langlands parameterization.
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Global Langlands parameterization

Drinfeld O-module

Given the system of functors {H,} as in the above theorem,
Lafforgue constructed the action of a large commutative algebra
(so-called excursion algebra) on each H;(W).

The spectral decomposition with respect to this action exactly
gives the sought-after Langlands parameterization.

We give a more conceptual explanation of Lafforgue’s construction
(following Drinfeld's idea).
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Global Langlands parameterization

Drinfeld O-module

Given the system of functors {H,} as in the above theorem,
Lafforgue constructed the action of a large commutative algebra
(so-called excursion algebra) on each H;(W).

The spectral decomposition with respect to this action exactly
gives the sought-after Langlands parameterization.

We give a more conceptual explanation of Lafforgue’s construction
(following Drinfeld's idea).

First, if [ is an abstract group, the set of homomorphlsms from I
to G is represented by an affine E-scheme Hom(I", G), on which G
acts by conjugation.
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Global Langlands parameterization

Proposition

Given a system of functors
{H; : Rep(G') — Rep(")}

satisfying similar conditions as in Lafforgue’s theorem, let
2l = Hyoy(Reg), where Reg = E[G] denotes the regular

representation of G. Then
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Proposition

Given a system of functors
{H; : Rep(G') — Rep(")}

satisfying similar conditions as in Lafforgue’s theorem, let
2l = Hyoy(Reg), where Reg = E[G] denotes the regular

representation of G. Then

e There is a natural G action on A
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Global Langlands parameterization

Proposition
Given a system of functors

{H, : Rep(G') = Rep(I'")}

satisfying similar conditions as in ALafforgue 's theorem, let
2l = Hyoy(Reg), where Reg = E[G] denotes the regular
representation of G. Then

o There is a natural G action on A

o There is a natural action of E[Hom(I", G)] on 2, compatible
with the above G-structure;

Xinwen Zhu Langlands correspondence over function fields



Global Langlands parameterization

Proposition

Given a system of functors
{H; : Rep(G') — Rep(")}

satisfying similar conditions as in ALafforgue 's theorem, let
2l = Hyoy(Reg), where Reg = E[G] denotes the regular
representation of G. Then
o There is a natural G action on ;
® There is a natural action of E[Hom(T, G)] on U, compatible
with the above G-structure;
o There is a natural isomorphism H;(W) = (A ® W)é of
' -modules.
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Global Langlands parameterization

Pseudo-representations

It follows that every H;(W) is acted by the (abstract) excursion
algebra X
B := E[Hom(T, 6)]°.
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Global Langlands parameterization

Pseudo-representations

It follows that every H;(W) is acted by the (abstract) excursion
algebra X
B := E[Hom(T, 6)]°.

Definition

A character x : B — Qy is called a G-valued pseudo-representation.
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Pseudo-representations

It follows that every H;(W) is acted by the (abstract) excursion

algebra X
B := E[Hom(T, 6)]°.

Definition

A character x : B — Qy is called a G-valued pseudo-representation.

When G = GL,, this definition agrees with the classical notion of
pseudo-representations.
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Global Langlands parameterization

Pseudo-representations

It follows that every H;(W) is acted by the (abstract) excursion
algebra X
B := E[Hom(T, 6)]°.

Definition

A character x : B — Qy is called a G-valued pseudo-representation.

When G = GL,, this definition agrees with the classical notion of
pseudo-representations.

Theorem (V. Lafforgue)

The natural map from the set of semisimple representations
o: T — G(Qy) up to G-conjugacy to the set of G-valued
pseudo-representations is a bijection.
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Global Langlands parameterization

Frobenius-Hecke compatibility

Let v be an unramified prime. The Frobenius conjugacy class at v
defines a canonical map Hom(I'r, G)/G — G /G, and therefore
induces a canonical map

— E[Hom(T¢, 6)]° = B.

o

E[G]
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Global Langlands parameterization

Frobenius-Hecke compatibility

Let v be an unramified prime. The Frobenius conjugacy class at v
defines a canonical map Hom(I'r, G)/G — G /G, and therefore
induces a canonical map

E[6]¢ — E[Hom(T, 6)]¢ = B.

The Frobenius-Hecke compatibility (which we refer as S =T

theorem) says that the induced action of E[G]¢ on H P (W)
coincides with the action of the unramified Hecke algebra T, under
the Satake isomorphism.
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Global Langlands parameterization

Elliptic Langlands parameter

As mentioned, H;"*"(W) is more or less the cohomology of some
modular variety associated to G.
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Global Langlands parameterization

Elliptic Langlands parameter

As mentioned, H;"*"(W) is more or less the cohomology of some
modular variety associated to G. It would be desirable to
understand its structure as a Tx[I'k]-module.
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Global Langlands parameterization

Elliptic Langlands parameter

As mentioned, H;"*"(W) is more or less the cohomology of some
modular variety associated to G. It would be desirable to
understand its structure as a Tx[I'k]-module.

It is known that H;"*P(W) # 0 only if the action of the diagonal
A(Zg) C G on W is trivial.
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Global Langlands parameterization

Elliptic Langlands parameter

As mentioned, H;"*"(W) is more or less the cohomology of some
modular variety associated to G. It would be desirable to
understand its structure as a Tx[I'k]-module.

It is known that H;"*P(W) # 0 only if the action of the diagonal
A(Zg) C G' on W is trivial. This would imply that for every

Langlands parameter ¢ : [r — G(Q,), the fiber 2, of A over ¢ is
an 68 := Zg(¢)/Ze-module.
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Global Langlands parameterization

Elliptic Langlands parameter

As mentioned, H;"*"(W) is more or less the cohomology of some
modular variety associated to G. It would be desirable to
understand its structure as a Tx[I'k]-module.

It is known that H;"*P(W) # 0 only if the action of the diagonal
A(Zg) C G' on W is trivial. This would imply that for every

Langlands parameter ¢ : [r — G(Q,), the fiber 2, of A over ¢ is
an 68 := Zg(¢)/Ze-module.

Definition

A Langlands parameter ¢ : T — G(Q) is called elliptic if Sy is
finite.

Xinwen Zhu Langlands correspondence over function fields



Global Langlands parameterization

Elliptic part of the cohomology

For a Langlands parameter ¢ : T — G and W € Rep(@’),
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Global Langlands parameterization

Elliptic part of the cohomology

For a Langlands parameter ¢ : T — G and W € Rep(@’), let W,
denote the representation of 'k on W given by

L2 6! GLw).
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Global Langlands parameterization

Elliptic part of the cohomology

For a Langlands parameter ¢ : T — G and W € Rep(@’), let W,
denote the representation of 'k on W given by

L2 6! GLw).

It commutes with the action of &4 on W.
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Global Langlands parameterization

Elliptic part of the cohomology

For a Langlands parameter ¢ : T — G and W € Rep(GA’), let W,
denote the representation of 'k on W given by

L2 6! GLw).

It commutes with the action of &4 on W.

Theorem (V. Lafforgue-Z.)

Q For each elliptic Langlands parameter ¢ : Tg — G (Qy), the
fiber A4 of 2 at ¢ is a finite dimensional T k[S4]-module.
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Global Langlands parameterization

Elliptic part of the cohomology

For a Langlands parameter ¢ : T — G and W € Rep(GA’), let W,
denote the representation of 'k on W given by

L2 6! GLw).

It commutes with the action of &4 on W.

Theorem (V. Lafforgue-Z.)

Q For each elliptic Langlands parameter ¢ : Tr — G(Q,), the
fiber A4 of 2 at ¢ is a finite dimensional T k[S4]-module.

Q Let x : B— Qy be the character corresponding to ¢ and
H;"P(W), the localization of the B-module H;"**(W) at the
maximal ideal of the kernel of x. Then

cusp _ S
HP (W) = (g @ W)




Local Langlands parameterization

Local Langlands category

Now we shift to the local situation.
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Local Langlands category

Now we shift to the local situation. We must then go to one
categorical level higher.
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Local Langlands parameterization

Local Langlands category

Now we shift to the local situation. We must then go to one
categorical level higher.

Namely, while the object to study in global theory is the space of
automorphic forms, the natural object to study in the local theory
is the category of smooth representations of G(F,).
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Local Langlands parameterization

Local Langlands category

Now we shift to the local situation. We must then go to one
categorical level higher.

Namely, while the object to study in global theory is the space of
automorphic forms, the natural object to study in the local theory
is the category of smooth representations of G(F,).

As we learned from the global theory, we shall enlarge this category
(which in some sense would be the local counterpart of Hy(1)).
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Local Langlands parameterization

Local Langlands category

Now we shift to the local situation. We must then go to one
categorical level higher.

Namely, while the object to study in global theory is the space of
automorphic forms, the natural object to study in the local theory
is the category of smooth representations of G(F,).

As we learned from the global theory, we shall enlarge this category
(which in some sense would be the local counterpart of Hy(1)).

It turns out that the more fundamental object here is the category
of sheaves on B(G) (the quotient of G(L) by the Frobenius
conjugation, where L is the completion of the maximal unramified
extension of F,.)
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Local Langlands parameterization

Local Langlands category

Whatever this category is, [1/G(F,)] C B(G) and therefore this
category should contain the category of smooth representations of
G(F,) as a full subcategory.
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Local Langlands parameterization

Local Langlands category

Whatever this category is, [1/G(F,)] C B(G) and therefore this
category should contain the category of smooth representations of
G(F,) as a full subcategory.

One approach of this category is via the category of sheaves on the
moduli of G-bundles on the Fargues-Fontaine curve.
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Local Langlands parameterization

Local Langlands category

Whatever this category is, [1/G(F,)] C B(G) and therefore this
category should contain the category of smooth representations of
G(F,) as a full subcategory.

One approach of this category is via the category of sheaves on the
moduli of G-bundles on the Fargues-Fontaine curve.

Another approach is via the category of Frobenius conjugate
equivariant sheaves on the loop group of G.
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Local Langlands parameterization

Local Langlands category

Whatever this category is, [1/G(F,)] C B(G) and therefore this
category should contain the category of smooth representations of
G(F,) as a full subcategory.

One approach of this category is via the category of sheaves on the
moduli of G-bundles on the Fargues-Fontaine curve.

Another approach is via the category of Frobenius conjugate
equivariant sheaves on the loop group of G.

The loop group LG of G is the affine (perfect) ind-scheme over k,
which represents the functor

Alg, — Grp, R~ G(Wp,(R)[1/w@.]),

where Wo, (—) is the Witt vector with coefficients in O, .



Local Langlands parameterization

Local Langlands category

The Frobenius conjugate adjoint quotient LG /Adg,opLG is not a
well behaved algebro-geometric object.
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Local Langlands parameterization

Local Langlands category

The Frobenius conjugate adjoint quotient LG /Adg,opLG is not a
well behaved algebro-geometric object. However, the category of
f-adic sheaves on it still makes sense via a two-step procedure.
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Local Langlands parameterization

Local Langlands category

The Frobenius conjugate adjoint quotient LG /Adg,opLG is not a
well behaved algebro-geometric object. However, the category of
f-adic sheaves on it still makes sense via a two-step procedure.

@ One first define the category of sheaves on the moduli of local
Shtukas;
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Local Langlands parameterization

Local Langlands category

The Frobenius conjugate adjoint quotient LG /Adg,opLG is not a
well behaved algebro-geometric object. However, the category of
f-adic sheaves on it still makes sense via a two-step procedure.

@ One first define the category of sheaves on the moduli of local
Shtukas;

@ Then one defines sheaves on LG /AdgopLG as
Hecke-equivariant sheaves on the moduli of local Shtukas.
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Local Langlands parameterization

Local Langlands category

The Frobenius conjugate adjoint quotient LG /Adg,opLG is not a
well behaved algebro-geometric object. However, the category of
f-adic sheaves on it still makes sense via a two-step procedure.

@ One first define the category of sheaves on the moduli of local
Shtukas;

@ Then one defines sheaves on LG /AdgopLG as
Hecke-equivariant sheaves on the moduli of local Shtukas.

In particular, there will be objects dreg, in this category whose
endomorphism is the (opposite) of the Hecke algebra
C(Kn\G(F,)/Kp), where Kj, is the level n-congruence subgroup
of G.
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Local Langlands parameterization

Local Langlands parameterization

Now, we can interpret Genestier-Lafforgue's result as follows.
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Local Langlands parameterization

Local Langlands parameterization

Now, we can interpret Genestier-Lafforgue's result as follows.

Theorem (Genestier-Lafforgue)

@ For every Ny, := Og/w{, and every n, there is a canonical
map
By, = Z(Enddreg, Am)s

where B, p,, is the local excursion algebra with \p,-coefficient,
and Oreg, A,, denotes the sheaf with Ap-coefficient.
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Local Langlands parameterization

Local Langlands parameterization

Now, we can interpret Genestier-Lafforgue's result as follows.

Theorem (Genestier-Lafforgue)

@ For every Ny, := Og/w{, and every n, there is a canonical
map

By, = Z(Enddreg, Am)s

where B, p,, is the local excursion algebra with \p,-coefficient,
and Oreg, A,, denotes the sheaf with Ap-coefficient.

@ These maps are compatible as m, n vary, and induces a
canonical map from the wg-adic completion of the local
excursion algebra to the wge-adic completion of the Bernstein
center of G(F,).
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Local Langlands parameterization

Local Langlands parameterization

Now, we can interpret Genestier-Lafforgue's result as follows.

Theorem (Genestier-Lafforgue)

@ For every Ny, := Og/w{, and every n, there is a canonical

map
By, = Z(Enddreg, Am)s

where B, p,, is the local excursion algebra with \p,-coefficient,
and Oreg, A,, denotes the sheaf with Ap-coefficient.

@ These maps are compatible as m, n vary, and induces a
canonical map from the wg-adic completion of the local
excursion algebra to the wge-adic completion of the Bernstein
center of G(F,).

© The resulting map is compatible with the global Langlands
parameterization.
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