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Introduction

• Kolmogorov–Arnold–Moser (KAM) theory gives results on quasi–periodic
motions in non–integrable dynamical systems and in particular on the
persistence of invariant tori in nearly–integrable Hamiltonian systems.

• Calleja-Celletti-de la Llave (2013-): efficient KAM theory for conformally
symplectic (dissipative) systems, and other results (behavior near
quasi-periodic tori, partial proof of Greene’s method, concrete estimates, etc.).

• Adding a dissipation to a Hamiltonian system is a very singular
perturbation: the Hamiltonian admits quasi-periodic solutions with many
frequencies, while a system with positive dissipation leads to attractors with
few quasi-periodic solutions and needs to include drift parameters.

• A KAM theory with adjustment of parameters was developed in remarkable
and pioneer papers: [Moser1967], see also [Broer, Simó, etc.], with a
parameter count different than in [CCL].
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Introduction

• The dissipative system depends on:
- conformal factor λ (measuring the dissipation);
- drift parameter µ, which is needed in dissipative systems, since to find tori, it
is not sufficient to adjust the initial conditions like in the conservative case.

• AIM: consider a dissipative system depending on a parameter, such that
when the parameter goes to zero, the system becomes symplectic.
• Analyze the domain of analyticity in the complex parameter ε ∈ C:

λ = λ(ε)→ λ(0) = 1 .

• Calleja-Celletti-de la Llave, "Domains of analyticity and Lindstedt
expansions of KAM tori in some dissipative perturbations of Hamiltonian
systems", Nonlinearity, vol. 30, 3151-3202 (2017).
• Calleja-Celletti-de la Llave, "Existence of whiskered KAM tori for
conformally symplectic systems", Preprint (2018).
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Symplectic vs. Conformally Symplectic

Definition

LetM⊆ Rd × Td be a symplectic manifold with symplectic form Ω. A
diffeomorphism fµ :M→M is conformally symplectic, if there exists a
function λ :M→ R such that

f ∗µΩ = λΩ .

• The system is symplectic when λ = 1.
• λ is constant for d ≥ 2.

Definition
A vector field Xµ is conformally symplectic if, denoting by LXµ the Lie derivative,
there exists λ : R2n → R such that

LXµΩ = λΩ .

• The time t-flow Φt satisfies (Φt)
∗Ω = eλtΩ.
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Conservative Standard Map

It is described by the equations (discrete analogue of the conservative
spin-orbit problem):

y′ = y + η sin x y ∈ R , x ∈ T , η ∈ R+ ,

x′ = x + y′ .

• SM is integrable for η = 0, non–integrable for η 6= 0.

• KAM theory provides the existence of invariant curves run with
quasi–periodic motions.
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Dissipative Standard Map

It is described by the equations (discrete analogue of the spin-orbit problem
with tidal torque):

y′ = λy + µ+η sin x y ∈ R , x ∈ T
x′ = x + y′ , λ, η ∈ R+, , µ ∈ R ,

0 < λ < 1 dissipative parameter, µ = drift parameter.

• λ = 1, µ = 0 conservative SM.

• For η = 0 the trajectory {y = ω ≡ µ
1−λ} × T is invariant:

y′ = y = λy + µ , ω = lim
xj

j
= y =⇒ ω = λω + µ =⇒ ω ≡ µ

1− λ
.
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Spin–orbit model

. triaxial satellite S (with I1 < I2 < I3);

. satellite moving on a Keplerian orbit around a central planet P;

. spin–axis perpendicular to orbit plane and coinciding with shortest physical
axis.

. in the dissipative case: tidal torque due to the non-rigidity of the satellite.
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• Conservative equation of motion:

ẍ + η (
a
r

)3 sin(2x− 2f ) = 0 , η =
3
2

I2 − I1

I3

corresponding to a 1–dim, time–dependent Hamiltonian:

H(y, x, t) =
y2

2
− η

2

( a
r(t)

)3
cos(2x− 2f (t)) .

• Dissipative equation of motion: tidal torque averaged over an orbital period
(e=eccentricity):

ẍ + η
(a

r

)3
sin(2x− 2f ) = −

(
1− λ(e; ...)

) (
ẋ− µ(e)

)
,

. λ = λ(e; ...) plays the role of the conformal factor;

. µ = µ(e) plays the role of the drift.
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Zero dissipation limit

•When λ approaches 1, the dissipative system approaches the conservative
one.

•We are interested to the limit λ→ 1.

• Physical motivations:

(i) satellites rotated fast in the past, slowed down and the tidal torque becomes
negligible, once the satellites have been evolved to the present state of
synchronous rotation with the permanent triaxiality larger than the tidal bulge;

(ii) another example: the atmospheric drag is a dissipative effect on satellites
in LEO, but the density of the atmosphere decreases exponentially and the
dissipation becomes negligible around 2 000 km.
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Role of the drift

• Looking for the torus with frequency ω = 2π
√
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Diophantine condition

Definition
We say that the frequency vector ω ∈ Rd satisfies the Diophantine condition if

| ω
2π
· q− p|−1 ≤ ν|q|τ , p ∈ Z , q ∈ Zd\{0} ν > 0 , τ > 0 ;

for τ > d − 1, D(ν, τ) = set of Diophantine vectors, which is of full
Lebesgue measure in Rd.
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KAM surface and invariance equation

Definition

LetM⊆ Rd × Td be a symplectic manifold and let f :M→M be a
symplectic map. A KAM surface with frequency ω ∈ D(ν, τ) is a
d–dimensional invariant surface described parametrically by an embedding
K : Td →M, which is the solution of the invariance equation:

f ◦ K(θ) = K(θ + ω) .

For a family fµ of conformally symplectic maps depending on a real
parameter µ, look for µ and an embedding K, such that

fµ ◦ K(θ) = K(θ + ω) .

• Symplectic case: unknown K, CS case: unknowns K, µ.
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Figure: The invariance equation f ◦ K(θ) = K(θ + ω).
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Symplectic limit

•We are interested in the symplectic limit.
• Consider λ = λ(ε) and a family of maps fµ,ε such that

f ∗µ,ε Ω = λ(ε) Ω , λ(0) = 1 .

We discuss analyticity, so all parameters are complex.
• Symplectic limit: ε ∈ C is a small parameter that controls the dissipation:

λ(ε) = 1 + αεa + O(|ε|a+1) , a ∈ Z+ , α ∈ C\{0} .

• Look for invariant tori by finding an embedding Kε : Td →M and a
parameter vector µε ∈ Cd, such that

fµε,ε ◦ Kε(θ) = Kε(θ + ω) .
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Symplectic Standard Map λ = 1, µ = 0

Analyticity domains of the conservative standard map: Berretti, Celletti,
Chierchia, Falcolini, de la Llave, Marmi, Tompaidis.

• From the standard map equations:

xn+1 − xn = yn+1, xn − xn−1 = yn, yn+1 − yn = η sin xn ⇒

xn+1 − 2xn + xn−1 = η sin xn ,

introduce a parametrization

x = θ + u(θ; η) ,

which conjugates the dynamics to a rigid rotation by ω: θn+1 = θn + ω.
• Compute the Lindstedt series of u:

u(θ; η) =

∞∑
j=1

uj(θ)η
j .
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Padé approximants

• Truncated Taylor expansion at order J around 0 for a fixed θ:

u[J](η) =

J∑
j=1

ujη
j .

Padé approximant is a rational function, ratio of 2 polynomials, which agrees
with the highest possible order with the truncated polynomial (J = L + M):

PL(η)

QM(η)
=

a0 + a1η + ...+ aLη
L

1 + b1η + ...+ bMηM = U[L|M](η) = u[J](η) .

The coefficients aj, bj can be obtained from the condition that the first
L + M + 1 terms coincide with the Taylor series; typically one takes diagonal
Padé L = M:

u(η)− U[L|L](η) = O(η2L+1) .
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• It is believed that u has a natural boundary for η ∈ C, i.e. its domain of analyticity
is bounded by a continuous curve where singularities are dense, obstructing analytic
continuation; it appears to be independent on θ (Figures by [Berretti-Chierchia, 1990]
sin x, golden ratio, [Berretti-Celletti-Chierchia-Falcolini, 1992] -
sin x + 1

50 sin 5x, ω = [3∞]).

• Greene’s breakdown threshold - 0.971635 - is the intersection of the analyticity
domain with the positive real axis, while the radius of convergence can be defined as

ρ = inf
θ∈T

[lim sup
j→∞

|uj(θ)|
1
j ]−1 ,

by studying the singularities via Padé approximants.
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Conformally symplectic Standard Map λ 6= 1, µ 6= 0

• Instead of using Padé approximants, compute the solution of the invariance
equation, assuming η ∈ C: applying a Newton’s method, follow the solution
from η = 0 increasing the real and imaginary parts of η = ηr + iηi until
blow-up ([Calleja-Celletti 2010]).
• Using again

xn+1 − (1 + λ)xn + λxn−1 − µ = η sin xn ,

and introducing the parametrization x = Kµ(θ) = θ + uµ(θ), expand Kµ in
terms of η ∈ C as

Kµ(θ; η) =

∞∑
j=1

Kµ,j(θ)(ηr + iηi)
j

= Kµ,r(θ; ηr, ηi) + iKµ,i(θ; ηr, ηi)

Kµ,j(θ) are real and the same for g(Kµ(θ)) = sin(Kµ(θ)):

η g(Kµ,r + iKµ,i) = ηrgr − ηigi + i(ηrgi + ηigr) .

=⇒ functional equation for Kµ,r, Kµ,i.
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Figure: Existence domains with axes: ηr and ηi, λ = 0.9.
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√
5−1
2 (circle) - Greene’s breakdown threshold = 0.97198;
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c) g(x) = sin x + 1

20 sin(4x) + 1
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√
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Conformally symplectic limit λ→ 1

[CCL, Nonlinearity, vol. 30 (2017)]

• AIM:

. Study the limit ε→ 0, i.e. λ(ε) = 1 + αεa + O(|ε|a+1)→ 1 with a ∈ Z+,
α ∈ C\{0}.

. Study the analyticity properties of Kε, µε, namely their perturbative
expansions and domains of analyticity as solutions of the invariance equation:

fµε,ε ◦ Kε = Kε ◦ Tω , (INV)

where Tω(θ) = θ + ω.
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Main result

•MAIN RESULT: if there exists a solution of (INV) for ε = 0 (symplectic case),
which satisfies some mild non-degeneracy conditions, we can find Kε, µε analytic in
ε for ε ∈ G, where G is obtained by removing from a ball centered at the origin, a
sequence of (much smaller) balls with centers in smooth curves going through the
origin (see [JdlLZ99] for domains of analyticity of resonant tori in nearly-integrable
systems).
• The radii of the balls decrease very fast as the centers of the excluded balls go to 0.
The centers of the balls are at |eik·ω − 1|1/a.

Figure: The good domain G is the region not covered by the black circles (the radii of the balls
have been rescaled for graphical reasons); a = 3 (d = 1, τ = 1).
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Ingredients

. An algorithm to produce a perturbative series expansion to all orders in ε,
i.e. an approximate solution as a truncation solving (INV) approximately, and
used as initial point of an iterative procedure which is shown to converge
through...

. ... a-posteriori KAM theorem for conformally symplectic systems with
complex parameters: near a nondegenerate approximately invariant torus,
there is a true invariant torus (started in [de la Llave et al 2005] for
symplectic systems).

. ... automatic reducibility: in the neighborhood of an invariant torus, there is
a change of coordinates that makes the linearization of the invariance equation
into a constant coefficient equation.
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Set-up

• For ρ > 0, complex extension of the d–dim torus:

Td
ρ = {z ∈ Cd/Zd : Re(zj) ∈ T , |Im(zj)| ≤ ρ , j = 1, ..., d} .

• Aρ = vector space of functions analytic in Int(Td
ρ), extending continuously

to the boundary of Td
ρ.

•We endow Aρ with the supremum norm, which makes it a Banach space:

||f ||ρ = sup
θ∈Td

ρ

|f (θ)| .
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Set-up

Definition

For ω ∈ Rd, τ ∈ R+:

ν(ω; τ) ≡ sup
k∈Zd\{0}

|eik·ω − 1|−1|k|−τ .

If ν(ω; τ) <∞, we say that ω ∈ Rd is Diophantine of class τ and constant
ν(ω; τ).
For λ ∈ C:

ν(λ;ω, τ) ≡ sup
k∈Zd\{0}

|eik·ω − λ|−1|k|−τ .

If ν(λ;ω, τ) <∞, we say that λ is Diophantine with respect to ω.

• Notice that ν(λ;ω, τ) ≤ |1− |λ||−1 <∞ for λ 6= 1, since

|eik·ω − λ||k|τ ≥ |eik·ω − λ| ≥
∣∣∣|eik·ω| − |λ|

∣∣∣ =
∣∣∣1− |λ|∣∣∣ .
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Interlude

•We will need to solve cohomological equations of the form:

W1(θ)−W1(θ + ω) = F1(θ)

λ W2(θ)−W2(θ + ω) = F2(θ) .

Expanding in Fourier series Wj(θ) =
∑

k Ŵjkeik·θ, inserting in the equations
above: ∑

k

Ŵ1keik·θ (1− eik·ω) =
∑

k

F̂1keik·θ

∑
k

Ŵ2keik·θ (λ− eik·ω) =
∑

k

F̂2keik·θ ,

whose solution involves the small divisors

1− eik·ω , λ− eik·ω .

Hence, the quantities ν(ω; τ), ν(λ;ω, τ).
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Assumption and domains

• Assumption (Hλ):

λ(ε)− 1 = αεa + O(|ε|a+1)| , a ∈ Z+ , α ∈ C\{0} .

• Definition of the domain G, which is a closed set where the Diophantine
constants of λ(ε) w.r.t. ω are not too bad, so that a good approximation (up to
εN) can be taken as initial condition for the iterative procedure:

G(A;ω, τ,N) = {ε ∈ C : ν(λ(ε);ω, τ) |λ(ε)− 1|N+1 ≤ A} ,

and (for a typically sufficiently small) r0:

Gr0(A;ω, τ,N) = G ∩ {ε ∈ C : |ε| ≤ r0} .
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Statement of the main result: Theorem

•Main Theorem:

♦ LetM≡ B × Td, B ⊆ Rd open, simply connected domain with smooth
boundary and with symplectic form Ω; let ω ∈ Rd be Diophantine; family of
CS maps fµ,ε with µ ∈ Γ ⊆ Cd open; ε ∈ C; conformal factor λ as in (Hλ).

♦ Assume that for ε = 0, fµ,0 is symplectic and that for some µ0 the map fµ0,0
admits a Lagrangian invariant torus, i.e. we can find an analytic embedding
K0 : Td →M, K0 ∈ Aρ, such that

fµ0,0 ◦ K0 = K0 ◦ Tω . (INV0)

♦ Assume that the torus K0 satisfies a suitable non–degeneracy condition.
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Statement of the main result: Theorem, Part A)

• Then, we have the following results.
A) We can find a formal power series expansion

K[∞]
ε =

∞∑
j=0

εjKj , µ[∞]
ε =

∞∑
j=0

εjµj ,

satisfying (INV) in the sense of formal power series, i.e. setting

K[≤N]
ε =

N∑
j=0

εjKj , µ[≤N]
ε =

N∑
j=0

εjµj

for any N ∈ N and ρ > 0, then for some 0 < ρ′ < ρ and CN > 0, we have

||f
µ
[≤N]
ε ,ε

◦ K[≤N]
ε − K[≤N]

ε ◦ Tω||ρ′ ≤ CN |ε|N+1 .
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Statement of the main result: Theorem, Part B)

B) We can find a set Gr0 ⊂ C, r0 sufficiently small, we can find

Kε : Gr0 → Aρ′ , µε : Gr0 → Cd ,

analytic in the interior of Gr0 and extending continuously to the boundary of
Gr0 , such that for ε ∈ Gr0 they satisfy (INV) exactly:

fµε,ε ◦ Kε − Kε ◦ Tω = 0 .

Moreover, the solutions Kε, µε have the formal series of part A as asymptotic
expansions for some 0 < ρ′ < ρ:

||K[≤N]
ε − Kε||ρ′ ≤ CN |ε|N+1 , |µ[≤N]

ε − µε| ≤ CN |ε|N+1 .
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• REMARK: G is a lower bound for the analyticity domain, but we conjecture
that G is essentially optimal in the sense that for a generic system, none of the
excluded balls can be filled completely⇒ it is possible that the set of ε for
which Kε, µε are analytic is larger than G.

• CONSEQUENCES:
. Absence of monodromy for tori, s/u bundles: one can continue uniquely
along loops that enclose points outside the established domain. On the
contrary, [JdlLZ99] proved no monodromy for tori, non-trivial monodromy of
s/u bundles.
. The functions Kε, µε are monogenic at many points in G, i.e. points for
which λ(ε) is Diophantine w.r.t. ω.
k = k(ε) is monogenic in a complex set if there exists the limit lim k(ε)−k(ε0)

ε−ε0
; when

the set is open, we have the definition of differentiable function.
. Kε, µε are Whitney differentiable in G: we can find series expansion of the
solution around any point in G and this will be the Whitney derivatives.
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Proof of the main Theorem

• To prove the Theorem, we need the following result, which shows that for
λ ∈ C, given an approximate solution (later the truncated power series)
satisfying a non-degeneracy condition, by an a-posteriori method we can start
an iterative procedure which is shown to converge.

KAM Theorem:
♦ LetM≡ B × Td, ω ∈ Rd Diophantine, ν(ω; τ) <∞, ν(λ;ω, τ) <∞,
fµ,ε with µ ∈ Γ ⊆ Cd (complex) conformally symplectic maps, ε ∈ C,
λ = λ(ε) complex.
♦ Let Ka, µa be an approximate solution of (INV) with error term E

fµa,ε ◦ Ka − Ka ◦ Tω = E .

♦ Assume that a suitable non–degeneracy condition (involving λ) is satisfied:

det

(
S S B + A1

(λ− 1)Id A2

)
6= 0 .
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Proof of the main Theorem

♦ For µ ∈ Γ, fµ,ε is a C1-family of analytic functions on an open connected
domain C ⊂ Cd\Zd × Cd. Assume that there exists ζ > 0, so that

dist(µa, ∂Γ) ≥ ζ , dist(Ka(Td), ∂C) ≥ ζ .

♦ Assume that the solution is sufficiently approximate, i.e. for some
0 < δ < ρ and C constant:

||E||ρ ≤ C
[
ν(ω; τ) ν(λ;ω, τ)

]2
δ4(τ+d) .

• Then, there exist Kε, µε, such that

fµε,ε ◦ Kε − Kε ◦ Tω = 0

and for positive constants CK , Cµ:

||Kε − Ka||ρ−δ ≤ CK ν(ω; τ)−1 ν(λ;ω, τ)−1 δ−2(τ+d) ||E||ρ ,
|µε − µa| ≤ Cµ ||E||ρ .

A. Celletti (Univ. Rome Tor Vergata) Analyticity domains of KAM tori in some dissipative system MSRI, August 2018 41 / 48



Non–degeneracy condition (involving λ)

det

(
S S B + A1

(λ− 1)Id A2

)
6= 0 .

- bar denotes average w.r.t. θ
- S quantity depending on Ka, DKa, λ, Dfµa,ε

- A1, A2 quantities depending on Ka, DKa, λ, Dµfµa,ε

- B solution of cohomology equation

λB− B ◦ Tω = −(A2 − A2) .
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About the proof of the KAM theorem

• The solution of (INV) is obtained by an iterative method, where at each step
we need to solve 2 cohomology equations, which involve small divisors of the
form

|eik·ω − 1|−1 , |eik·ω − λ|−1 .

• Having fixed ω and τ , the quality factor ν(ω; τ) ν(λ;ω, τ) is a function only
of λ. We need to identify complex domains in the ε-plane, where this quality
factor is bounded uniformly.
• The cohomology equations are of the form:

λϕ(θ)− ϕ(θ + ω) = γ(θ) ,

γ : Td → C with zero average, γ ∈ Aρ, λ ∈ C; a (standard) lemma states that
there exists a unique solution with zero average such that

‖ϕ‖ρ−δ ≤ C(τ, d) ν(λ;ω, τ) δ−τ−d ‖γ‖ρ

for 0 < δ < ρ.
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Proof of Part A)

• Start from K0, µ0 exact solution of

fµ0,0 ◦ K0 = K0 ◦ Tω . (INV0)

Insert K[≤N]
ε , µ[≤N]

ε in (INV), expand in series of ε and equate the coefficients
of same power of ε to obtain recursive relations defining Kj, µj.
Order 1:

(Dfµ0,0 ◦ K0)K1 − K1 ◦ Tω + (Dµfµ0,0 ◦ K0)µ1 = −Dεfµ0,0 ◦ K0 .

Order 2 ≤ j ≤ N:

(Dfµ0,0 ◦ K0)Kj − Kj ◦ Tω + (Dµfµ0,0 ◦ K0)µj = Fj(K0, ...,Kj−1, µ0, ..., µj−1) ,

where Fj is an explicit polynomial.
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Proof of Part A)

• Let M0 = [DK0 | J−1 ◦ K0 DK0 N], N = (DKT
0 DK0)−1, S0 suitable function:

(Dfµ0,0 ◦ K0(θ)) M0(θ) = M0(θ + ω)

(
Id S0(θ)
0 Id

)
. (AUX)

• Let Kj(θ) = M0(θ)Wj(θ):

(Dfµ0,0 ◦ K0)M0 Wj −M0 ◦ Tω Wj ◦ Tω + (Dµfµ0,0 ◦ K0)µj = Fj(K0, ...,Kj−1, µ0, ..., µj−1)

and using (AUX):

M0 ◦ Tω

(
Id S0(θ)
0 Id

)
Wj−M0 ◦ Tω Wj◦Tω+(Dµfµ0,0◦K0)µj = Fj(K0, ...,Kj−1, µ0, ..., µj−1) ,

which gives for Wj = (Wj1,Wj2):

Wj2 −Wj2 ◦ Tω + A20µj = Ẽj2

Wj1 −Wj1 ◦ Tω + A10µj = Ẽj1 − S0Wj2

for suitable functions A10, A20, Ẽj1, Ẽj2, which can be solved under the
non-degeneracy condition.
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Proof of Part B)

• Start from the approximate solution (K[≤N]
ε , µ

[≤N]
ε ), let A > 0, ε0 ∈ Gr0(A),

where the cohomological equations can be solved.

• Choose ε small enough; taking (Ka, µa) = (K[≤N]
ε , µ

[≤N]
ε ) the error is small

and for r0 suff. small all assumptions of KAM Theorem are satisfied.

• Hence, there exists an exact solution of (INV), satisfying the bounds.
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Accurate numerical computation of the domain

• From [Bustamante-Calleja (2018)], dissipative standard map with
λ(ε) = 1 + ε3, η = ε, ω = 2π

√
5−1
2 , striking results!

Figure: Domain G: theoretical expectation (left) and numerical computation (right).
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