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PERIODIC ORBITS OF HAMILTONIAN SYSTEMS: THE CONLEY CONJECTURE AND BEYOND
Given by: Viktor Ginzburg

A general talk on periodic orbits of Hamiltionian systems.

Definition

Symplectic topological methods

- Importance

Different perspective for the study of interesting phenomena and different aspects of dynamics.

Hamiltonian systems

e Examples

- motion in a conservative force: § = —LVV/(q)

- geodesic flows, closed geodesics. Abundance of periodic orbits.

o Class. of Hamiltonian equation
p==o
HE : { o (0.1)

Newton equation: § = —1VV(q)
1 2
H= Vi(g).
7 P17 +V(g)

e Symplectic perspective. In Symplective Geometry, somewhat more general:we have a symplectic form. (W?", @)
symplectic manifold w € Qz(W), o" #0,dw =0 Example: w =dp Adq =Y dp; \dq;, locally is always the case.
H:RxW-—=R, teR

ix,® = —dH, (HE)~ ¢} Hamiltonian Flow

- Ex: R?", cotangent bundle- geodesic flow:
T"M=TM — R

. . .1
piq; Riemannian metric 5 <y >

Then ¢’ = ¢}, geodesic flow

Interested in periodic orbits: autonomous and time-dependent

1) H:W — R autonomous.
{H = ¢} level curve fixed. Period varies.

2) 0=ou =0

When k > 1 there are different types of orbits. We need to distinguish between:
simple vs iterated

The interesting case is when the system has infinitely many simple periodic orbits

A connection between the topology and the dynamics can be stated for CP", S?, X1, I1>" and many other symplectic
manifolds.



Figure 1

Variational principles Look at periodic orbits from a totally different perspective.

Meta Theorem (Least Action Principle): k—periodic orbits of a fixed period = critical points of the action functional Ay.
In the case of time dependant flow the definition is easy.
Simple definition: of Ay

Ay : A =loops inW — R

1) W open.
o=dA
w=d(pANdq) )
An(x) = — / A+ /0 H,(x(1)dr) 0.2)
1) W close.
o m,w)=0

In this case I look on Ay : A = Contractible loops — R

Figure 2

Rather than looking at the dynamics of ¢, I look at the critical point of Ay —— > Morse Theory (non-degenerate) and Lusternik — Schnirelmann.

Main idea: Find Crit(Ay) = k-periodic orbits This prespective translates to:

Crit(Ay) = complex C,(H)
e > Cp(H) = Cp1 (H) — ... 0.3)
Goal: To Use the Homology of (C.(H),d) = to study periodic orbits.

o If Homology = 0O there are no periodic orbits.

e If Homology # 0 = Existence of periodic orbits. But, you don’t know whether these orbits are simple or iterated!
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Figure 3

In symplectic topology: Floer Theory
Floer: Floer Homology, k =1 HF,.(H) = H,(W) (up to a shift of degree)
= Arnold’s conjecture: lower bound on number of 1—periodic orbits.

| Fix(¢) [> SB(W) (0.4)

even with non degenerate No dynamics info. It does not give any info about dynamics.; it is more a topological result. Does
not capture the evolution of the system.

A step towars dynamics: Conley Conjecture Say ¢ : (W>", @) — (W?", ) . And we are looking for k—periodic orbits
Z (@) = the set of all k—periodic orbits.
P, (9) = simple k—periodic orbits

I would like to understand how these sets changes depending on k. Does the set grows?

Theorem: (Conley Conjecture) For many W every ¢ has infinite many simple periodics orbits This conjecture has a
long history and many people have worked on it: Salomon-Zehnder, Franks-Handel, Hingston,Gurel, Hein, Mazzucchelli,
Ginzburg...

Also on results on the growth of the set 2 (@)

Floer theory Main tool but by itself is not enough since HF (¢) = HF (¢?) = ... = HF (¢¥) for allk € N
One underlying common component

Local info (e.g. a particular type of periodics orbit) — Global Homological info. — other periodic orbits and more dynamics

In Riemannian metric you have infinity many geodesics. However this infinitely many geodesics splits in two: with
homological growth and no homological growth.

Counterexamples There are very simple counterexamples to the Conley-Conjecture.
Irrotational rotation of S, similar to CP". The dynamics is very trivial. See Figure 4

Z (@) =Poles and nothing else.

There are exactly two periodic orbits but a lot of dense orbits.

For the sake of symplicity we are still working with CP"
Definition of pseudo orbit (PR) ¢ :CP" — CP"isaPRif | & |=n+1,i.e, ¢ has as few periodic orbits as posible.

Franks theorem and pseudo-rotations Franks Theorem: Say ¢ : S*> — S? Hamiltonian diffeomorphism has | Fix(¢) |>
3= 2(p)|==

Conjecture Hofer -Zehnder: Say ¢ : W — W has more | Fix(¢) | than necessary = | () |= oo, @ cannot be a pseudo
rotation.

Conjecture Gurel, G: @ : W — W has a fixed point that looks out of place (unnecessary) = | 2 (@) |= oo
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Figure 4: Figure 1 on the blakboard.

Theorem [G.,G.] : @ : CP" — CP" has a hyperbolic fixed point = | 2 (@) |= oo, ¢ cannot be a pseudo orbit (PO).

Theorem [G., G.] : The same is true when @ has a fixed point which is isolated and has local homology # 0 as an invariant
set.
There are interesting examples.

Theorem ¢ : CP" — CP” PR every neighborhood of any Fix(¢) contains an entire trayectory, not isolated.
Example: For CP' = S? Le Calvez- Yoccoz-Franks.



