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HAMILTONIAN DYNAMICS AND EXTENSION OF SYMPLECTIC/CONTACT FORMS
Given by: Emmy Murphy

Interesting questions
1. Given a smooth manifold M, does there exist a symplectic/ contact structure in M?

2. Given a symplectic/contact structure near d(B>"), does it extend to B>"*?

Hamiltonian suspension
Fix a symplectic manifold ((M ,0) =D*""2 0= wyy =Ydy /\dx)
Let H: M xR — R be a Hamiltonian,

X~ 0 M — M.

Assume H > 0 on dM. Look for a larger manifold M x R?,® = @ +dp Adq
Consider an hyersurface and get a foliation: .7 = her(® |y) = span(X,_p, )

Moser/Weinstein

Z determines the germ of @ near Y. (% with transverse symplectic structure).

F =span{dq+ X}, + H,0p}

To make this more pictoral,

Figure 1

Better: H: M xS' - R
Y CMxT*S"{p=Hy(x)}

Y e M x S! 0.1)

Definition 0.1 Let dM # 0,

o{p>0}CT*S!

o{p>0}=C*CC

op = r?® |c= dr*d0(the simplectic form of C) So define Y = {r* < Hg(x)}, ¥ CIM x C.

Y is well defined since H > 0 near dM.

Take Y =Y UY (is well defined since {p > 0} )
{p=r*=Hp(x);x € IM}

Y 2 (M x S UIM x D* = 9(M x D?)



Figure 2

NOTE: Define H > 0 everywhere, then Y CM x {p >0} C M x T*S!
oYCMxC*
0 V=0 ({r < Hy))

So, in particular the symplectic form extends both.
For the following I will restrict myself to the disc.

Rises the questions: Questions of which symplectic structure on d(B*") extend to B>" are lied to questions what which
Hamiltonian diffeomorphism ¢ € Ham(D?"~?) can be generated by positive H;

NOTE: Simplectic structure Y is different for H = H + cte, Since Y is different

Exemple: Say a Hamiltonian of the form
Possible to “scale’ values so that volume is positive, but it extends to no symplectic structure

Figure 3 '
(Similar to Gromov-non-squeezing)

Contact Geometry Let (M, ) contact, H : M — R defines Xy by
0 (X1da)|nera= (—dH) ker a
o a(Xy)=H
If @}, is the flow of Xy (¢};) ot = Aot ford > 0,4 € C*M
Let %, & = Ry (H) 0, with Ry = X~ the Lie derivative of o.

In contact geometry, the Lie Albegra, [oNT(M,a) = C*(M).



Exemple in Darboux chart:
R* o =dz— Y Yidx;

(x,y,2) — (cx,cy,c’z) preserves o conformally

Xy = 0+ 0y +20z

is Hamiltonian.
Can also graph H : M x R — R in M x R?, & = o+ pdq get Y = {H,(x) = p} still has characteristic foliation,

F ={0q+Xu+9,}

Z determines contact structure near Y.
NOTE: Is not true , if n > 2, that exist @, € [oNT(th’;l), such that for any ¢, exists v,
-1 —1
(pmin W(P II/
generated by H~0.

Is also not true, if n > 2, that exist (P,;,-L

€ [oNT(D?") such that for any @, exists v,
-1 ~1
(Pmin W(PII/

generated by H > 0.
But,

Theorem (Borman-Eliashberg-Nancy Hingston) Exist ¢,,;,, such that for all ¢, exists y, k > 0. Such that

q)minﬁ”-ﬁq)min < II/(P‘V_I

with #...f k— times.

Figure 4

Most essential steps in the proof:

Theorem: Any smooth manifold M, where TM @R is complex admits a contact structure.

Figure 5



