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DESINGULARIZING SINGULAR SYMPLECTIC STRUCTURES TO UNDERSTAND THEIR ASSOCIATED DYNAMICS
Given by: Eva Miranda

b-Poisson structures in the universe of Poisson Structures Assuming transversality and that the critical set is no empty

this is the set of Poisson structure:

Figure 1

Definition 1. Symplectic structure

o € Q*(M), o — symplectic structure and dw = 0. So, @ is a closed 2-form and non degenerate.

b-vector field is a Poisson structure
o I1c AX(TM)

o {f.g}=T1(df,dg)

o I1=Y", aip,- A aiq’_ ~» {f, g} standard Poisson bracket

Review of General definition of a Poisson structure.
{,}:C*(M) xC*(M) — K~ (M),
1 R- bilinear, antysimetric satisfying
2 Leibniz identity:{f,gh} = {f,g}h+g{f,h}
3 Jacobi identity: {f,{g,h}}+{g,{h. f}}+{h,{f,g}} =0

Jacobi condition in b-vector fields can be summarized by:

Jacobi if and only if [IT,IT) = 0 (Schouten-Nijenhuis Bracket)

Schouten-Nijenhuis bracket is the extension of a Lie bracket from vector fields to multi-vector fields.

Example of a b-Poisson structure
Going to dimension two. Take a sphere and, the field 4 (see Figure 2).
Take the following Poisson structure:
o [1= h% A aa—ethis is a b-vector field.
e [I1,I1] = 0. In dimension 2 this is always satisfied.
In this case,

1. Z={h =0} . The equator is a critical set.

2. I, = 0. In this case I will get the Zero Poisson structure.



Figure 2

Definition 2. Hamiltonian vector field

If T have a Poisson structure very easily we can associate to it a Hamiltonian vector field of f by defining:

Xf = H(dfa )

This vector field is called the Hamiltonian vector field of f.

Definition 3 Consider 2 = {X;, f € C*(M)}, it turns out that
2 is integrable in the sense of Frobenius theorem so, I have a foliation, .%, and this foliation is called the symplectic
foliation.

Example of b-Poisson structure in higher dimensions Consider a Poisson manifold (N>"~!,II). Consider a Co-
dimension 1 Foliation .#. .% Symplectic foliation. Assume that there exist a vector field X that is transverse to this symplectic
foliation .% and which is a Poisson vector field.

Ghan
fo:k'\mm s S.’ M’?\ld-\'( H'

Figure 3

Then (S' x N, f (6)% A X +1I)) with function f vanishes linearly.



Desingularizing singular symplectic structures to

understand their associated dynamics

Connections for Women: Hamiltonian Systems, from
topology to applications through analysis

Eva Miranda (UPC & Observatoire de Paris)

MSRI
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@ Motivating examples

© 1-Symplectic manifolds

9 Integrable systems on b-symplectic manifolds
@ Desingularizing b™-symplectic manifolds

© Applications of the desingularization technique
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The restricted 3-body problem

@ Simplified version of the general 3-body problem. One of the bodies has
negligible mass.

@ The other two bodies move independently of it following Kepler's laws for
the 2-body problem.

Spacecraft

Figure: Circular 3-body problem
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Planar restricted 3-body problem

@ The time- dependent seIf—potentiaI of the small body is
Ul(g,t) = ‘q ql‘ + ‘q 7 with ¢ = q1(t) the position of the planet with

mass 1 — p at time ¢ and g2 = ¢2(t) the position of the one with mass p.

@ The Hamiltonian of the system is
H(q,p,t) =p*/2=Ulg.t), (q,p) € R* x R* where p = ¢ is the
momentum of the planet.

@ Consider the canonical change (XY, Px, Py ) +— (r,a, P =:y, P, =: G).

@ Introduce McGehee coordinates (z, o, y, G), where r = % z€RT,
can be then extended to infinity (z = 0).

@ The symplectic structure becomes a singular object
4

——dz ANdy +da N dG.
X

which extends to a b3-symplectic structure on R x T x R2.

@ The 2-body problem for i = 0 is integrable with respect to the singular w.
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Model for these systems

(b™-symplectic)

1
w = del ANdyq + dei A dy;
i>2

or (m-folded)
w=x7"dx; Ady1 + Z dx; A dy;
i>2

Consider a system of two particles moving under the influence of the generalized
potential U(z) = —|z|~%, a > 0, with |z| the distance.

Double collision

The McGehee change of coordinates used to study collisions provides
b™-symplectic and m-folded symplectic forms for any m in the problem of a
particle moving in a central force field with general potential depending on m.
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The 3-body problem

@ Consider the system of three bodies with masses m1, ms, m3 and positions
a1 = (q1,42,43),92 = (94,95, 46), 93 = (47, s, o) € R®.

@ Define the 9 x 9 matrix M := diag(my,m1, m1, ma, ma, Mo, M3, M3, M3).
@ Assume central coordinates (mi1qy + maqa + msqs = 0).

@ Introduce the following “McGehee"-coordinates:

r:=+/qT Mg, s = g, 2= py/T. (1)

@ r = 0 corresponds to triple collisions. Essentially, these are spherical
coordinates since s lies on the unit-sphere in R? with respect to the metric
given by M.
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The 3-body problem

@ The standard symplectic form 2?21 dg; N dp; becomes in the new
coordinates (7, S1,...,88, 21, .-,29).

2
Z_:( dr A dz; +/rds; AN dz; — 2\/Fcls,/\dr)—l—

1
———— | pdr Adzg — isids; A d = ssids; Adr |,
—|—W<,ur 29 T;ms S 29 + zz;ms S r)

with p —1—ZZ L s2m;.

9 [ r?
/\ dql A\ dpl = /iidbl N le A\ db’z A\ dZQ VANPAN dég A\ ng Adr N\ ng,
™o

i=1

Itisa %—folded symplectic structure. (In the n-body problem m-folded
symplectic for a certain m).
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Other examples

@ Kustaanheimo-Stiefel regularization for n-body problem ~~ folded-type
symplectic structures

®
\
o O

N

OO0

@ two fixed-center problem via Appell's transformation (Albouy) ~
combination of folded-type and b™-symplectic structures ~~ Dirac
structures.

Eva Miranda (UPC) Hamiltonian Dynamics August 17, 2018 7 / 40
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Physical examples and (singular) symplectic stru

Classical Hamiltonian

s e Symplectic structures

Elliptic restricted 3-
Slelel Aolgelell=n gl Ve o b3-symplectic structure
Gehee coordinates

McGehee regularization

o ® Folded-type symplectic structures

Kustaanheimo-Stiefel
SetElE e o Folded symplectic structure
body problem

V(S e okl ® bM-symplectic structures
elpelel RIS o Folded-m symplectic structures
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b-Symplectic/b-Poisson structures

Definition
Let (M?>",1I) be an (oriented) Poisson manifold such that the map
p € M w— (II(p))" € A*™(TM)

is transverse to the zero section, then Z = {p € M|(II(p))" =0} is a
hypersurface called the critical hypersurface and we say that II is a b-Poisson

structure on (M, 7).

| A\

b-symplectic, log-symplectic
Batakidis, Braddell, Cardona, Cavalcanti, Delshams, Frejlich, Gualtieri, Guillemin,
Kiesenhofer, Klaasse, Lanius, Songhao Li, Marcut, Martinez-Torres, Miranda,
Oms, Osorno, Pelayo, Pires, Planas, Radko, Ratiu, Scott, Vera, Villatoro,
Weitsman

N

Eva Miranda (UPC) Hamiltonian Dynamics August 17, 2018 9 /40



Darboux normal forms

Theorem (Guillemin-M.-Pires)

For all p € Z, there exists a Darboux coordinate system x1,y1,...,Tn,Yn
centered at p such that Z is defined by x1 = 0 and

= 0y1 Z Ox; Oyz

Darboux for b™-symplectic structures

0 0 "9 0
M=al— A A
i Ory  Oyr N ; Or; 0Oy
or dually

w =

dxl A dy, + Zdwz A dy;

xm
! =2

V.
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Radko's classification of b-Poisson surfaces

Radko classified these structures on compact oriented surfaces:

@ Geometrical invariants: The topology of S and the curves ~y; where II
vanishes.

@ Dynamical invariants: The periods of the “modular vector field” along ~;.

@ Measure: The regularized Liouville volume of S, VS(IT) = [, __wr for h a

|h|>e
function vanishing linearly on the curves ~1,...,7, and wy the "dual "form

to the Poisson structure.

Other classification schemes: For b™-symplectic structures (not necessarily
oriented) ~» Scott, M.-Planas.
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Other compact examples.

@ The product of (R, 7r) a Radko compact surface with a compact
symplectic manifold (S,w) is a b-Poisson manifold.

@ corank 1 Poisson manifold (N, ) and X Poisson vector field =
(St x N,f(@)% A X + ) is a b-Poisson manifold if,

© f vanishes linearly.
@ X is transverse to the symplectic leaves of V.

We then have as many copies of N as zeroes of f.
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Poisson Geometry of the critical hypersurface

This last example is semilocally the canonical picture of a b-Poisson
structure .

© The critical hypersurface Z has an induced regular Poisson structure
of corank 1.

© There exists a Poisson vector field transverse to the symplectic
foliation induced on Z.
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The singular hypersurface

Theorem (Guillemin-M.-Pires)

If L contains a compact leaf L, then Z is the mapping torus of the
symplectomorphism ¢ : L — L determined by the flow of a Poisson vector
field v transverse to the symplectic foliation.

This description also works for b"-symplectic structures.
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A dual approach...

@ D-Poisson structures can be seen as symplectic structures modeled
over a Lie algebroid (the b-cotangent bundle).

@ A vector field v is a b-vector field if v, € T,,Z for all p € Z. The
b-tangent bundle *T'M is defined by

b-vector fields }

L(U,*TM) _{ on (U,UNZ)

Eva Miranda (UPC) Hamiltonian Dynamics August 17, 2018 15 /



o The b-cotangent bundle *T*M is (*TM)*. Sections of AP(*T* M)
are b-forms, ®QP(M).The standard differential extends to

d QP (M) — PPt (M)

@ A b-symplectic form is a closed, nondegenerate, b-form of degree 2.

@ This dual point of view, allows to prove a b-Darboux theorem and
semilocal forms via an adaptation of Moser’s path method because
we can play the same tricks as in the symplectic case.

@ We can introduce b-contact structures on a manifold /2"t as
b-forms of degree 1 for which o A (da)™ # 0.

What else?
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Geometrical invariants

Theorem (Mazzeo-Melrose)
The b-cohomology groups of a compact M are computable by

bH*(M) = H*(M)® H*1(2).

Corollary (Classification of b-symplectic surfaces a la Moser)

Two b-symplectic forms wy and w1 on an orientable compact surface are
b-symplectomorphic if and only if [wy] = [w1].

Indeed,

YH*(M) = Hiy(M)
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b-integrable systems

b-integrable system A set of b-functions? f1,..., f, on (M?",w) such that

@ f1,...,fn Poisson commute.

@ dfi A---Adf, # 0 as a section of A”(°T*(M)) on a dense subset of M.

2clog |z| + g

The symplectic form %dh A df defined on the interior of the upper hemisphere
H, of S? extends to a b-symplectic form w on the double of H which is S2.
The triple (5%, w, log|h|) is a b-integrable system.

.

Example

If (f1,...,fn) is an integrable system on M, then (log|hl, f1,..., f») on
H, x M extends to a b-integrable on S? x M.

v
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Action-angle coordinates for b-integrable systems

The compact regular level sets of a b-integrable system are (Liouville) tori.

Theorem (Kiesenhofer-M.-Scott)

Around a Liouville torus there exist coordinates
(p1y--sDPny01,...,0,) : U — B™ x T" such that

n
€
wly = ])—dpl/\d91+2dp7;/\d0i, (2)
! i=2
and the level sets of the coordinates p1, ..., p, correspond to the Liouville

tori of the system.

Reformulation of the result

| A

Integrable systems semilocally «~ twisted cotangent lift? of a T™ action
by translations on itself to (T*T"™).

*We replace the Liouville form by log [p:[d6: + >, pidf;.

v
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@ Topology of the foliation. In a neighbourhood of a compact connected fiber
the b-integrable system F' is diffeomorphic to the b-integrable system on
W :=T" x B" given by the projections logp1,p2, ..., Pn.
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@ Topology of the foliation. In a neighbourhood of a compact connected fiber
the b-integrable system F' is diffeomorphic to the b-integrable system on
W :=T" x B" given by the projections logp1,p2, ..., Pn.

@ Uniformization of periods: We want to define integrals whose
(b-)Hamiltonian vector fields induce a T™ action. Start with R"-action:

® : R"x(T"xB") — T"xB"
((trye o stn)ym) = ® o 0d™ (m).

Uniformize to get a T" action with fundamental vector fields Y;.

Eva Miranda (UPC) Hamiltonian Dynamics August 17, 2018 20 /



@ Topology of the foliation. In a neighbourhood of a compact connected fiber
the b-integrable system F' is diffeomorphic to the b-integrable system on
W :=T" x B" given by the projections logp1,p2, ..., Pn.

@ Uniformization of periods: We want to define integrals whose
(b-)Hamiltonian vector fields induce a T™ action. Start with R"-action:

® : R"x(T"xB") — T"xB"
((trye o stn)ym) = ® o 0d™ (m).

Uniformize to get a T" action with fundamental vector fields Y;.

© The vector fields Y; are Poisson vector fields (check Ly, Ly,w = 0).
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@ Topology of the foliation. In a neighbourhood of a compact connected fiber
the b-integrable system F' is diffeomorphic to the b-integrable system on
W :=T" x B" given by the projections logp1,p2, ..., Pn.

@ Uniformization of periods: We want to define integrals whose
(b-)Hamiltonian vector fields induce a T™ action. Start with R"-action:

® : R"x(T"xB") — T"xB"
((trye o stn)ym) = ® o 0d™ (m).

Uniformize to get a T" action with fundamental vector fields Y;.

© The vector fields Y; are Poisson vector fields (check Ly, Ly,w = 0).

@ The vector fields Y; are Hamiltonian with primitives oy, ..., 0, €*C>(W).
In this step the properties of b-cohomology are essential. Use this action to
drag a local normal form (Darboux-Carathéodory) in a whole
neighbourhood.
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L

Figure: Fibration by Liouville tori

Applications to KAM theory (surviving tori under perturbations) on b-symplectic
manifolds (Kiesenhofer-M.-Scott).
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KAM for b-symplectic manifolds

Theorem (Kiesenhofer-M.-Scott)

Consider T™ x B)' with the standard b-symplectic structure and the b-function

H = klog |yi| + h(y) with h analytic. If the frequency map has a Diophantine
value and is non-degenerate, then a Liouville torus on Z persists under sufficiently
small perturbations of H. More precisely, if |e| is sufficiently small, then the
perturbed system

H.=H +eP

(with P(p,y) = log|y:| + f1(#,y) + y1f2(, y) + f3(¢1,91)) admits an
invariant torus T.

Moreover, there exists a diffeomorphism T™ — T close to the identity taking the
flow vt of the perturbed system on T to the linear flow on T™ with frequency

vector (EER ).
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Toric manifolds and integrable systems

Theorem (Delzant)

Toric manifolds are classified by Delzant's polytopes. More specifically, the
bijective correspondence between these two sets is given by the image of the
{toric manifolds} — {Delzant polytopes}

moment map: (M2, w0, T, F) — F(M)

— R

I

CP?

(tl,tg) . [Z() Lz ZQ] = [ZO . 6“12’1 N 6it222]

Eva Miranda (UPC) Hamiltonian Dynamics August 17, 2018
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Delzant theorem on b-manifolds

o Delzant theorem and convexity for T*-actions (Guillemin-
M.-Pires-Scott).
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(Singular) symplectic manifolds

b™ -Symplectic

Folded symplectic
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Symplectic
manifolds

¢ Darboux theorem

¢ Delzant and
convexity theorems

* Action-Angle
coordinates

¢ Darboux theorem

e Delzant and
convexity theorems

* Action-Angle
theorem

Hamiltonian Dynamics

Folded symplectic
manifolds

¢ Darboux theorem
(Martinet)

* Delzant-type
theorems (Cannas da
Silva-Guillemin-Pires)

* Action-agle theorem
(M-Cardona)

August 17, 2018



Orientable cp2 g4
Surface

e |s symplectic ¢ |s symplectic e |s not

* Is folded * Is folded symplectic
symplectic symplectic * |s not b-

* (orientable e Is not b- symplectic
or not) is b- symplectic ¢ |s folded-
symplectic symplectic
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Desingularizing b™-symplectic structures

Theorem (Guillemin-M.-Weitsman)

Given a b™-symplectic structure w on a compact manifold (M?", Z):

o Ifm = 2k, there exists a family of symplectic forms w. which coincide
with the b™-symplectic form w outside an e-neighbourhood of Z and
for which the family of bivector fields (w.)~! converges in the

C?+=1_topology to the Poisson structure w™" ase — 0 .

o Ifm = 2k + 1, there exists a family of folded symplectic forms w,
which coincide with the b™-symplectic form w outside an
e-neighbourhood of Z.
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Consequences

A manifold admitting a b**-symplectic structure also admits a symplectic
structure.

A manifold admitting a b***+1-symplectic structure also admits a folded
symplectic structure.

Theorem (Cannas da Silva)

Any orientable compact 4-manifold admits a folded structure.

The converse is not true.

S4 admits a folded structure but no b-symplectic structure.
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Deblogging b**-symplectic structures

de 2=l
w:ﬁ/\(Zaix’)—f—ﬁ (3)
i=0

@ Let f € C*°(R) be an odd smooth function satisfying f/(z) > 0 for all
x € [-1,1],

and such that outside [—1, 1],

f(@—{m-ﬁi%—l—? for x< -1

W—FZ for z>1
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Deblogging b?*-symplectic structures (Proof)

@ Scaling:

o) = 7 (). ®)

€
Outside the interval [—e¢, €] ,

—1 2
f (x) _ ) Brk—DezFT T @I for = < —e
€ - —1 2
(2k—1)z2F 1 + 2h—1 for x>e€

@ Replace j%ﬁc by df. to obtain

2k—1

we=dfe N( D aia’) +

=0

which is symplectic.
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Symplectic character

@ da; =0~ we = dfe A (Z%Ol a;z') + 3 closed.
@ Outside U, we coincides with w.
@ In U but away from Z,

n dfﬁ 2k n

w

« = dz”
which is nowhere vanishing.
@ To check that w, is symplectic at Z, observe that
2k—1 2k—1

wE:dfe/\(in’ai)+ ,_zkf< >dac/\ ZlOéL
i=0

which on the interval |z| < € is equal to
e 2F(f/(2) dx A ag + O(e)) + B and hence

W = e_Zk(f’C:) dz N ag A B"L + O(e))

which is non-vanishing for € sufficiently small dz A ag A B7~1 £ 0.
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Convergence

@ To check

1w (29,0 90 90 90 0

where g(z) = f,%z), converges to

w71*3'2k2/\2+iAi+“'+iA 9
ST 0z Oy Oxs Oy 0r,  Oyn

(6)

as € tends to zero.
Consider h(z) = (%)21@719(%)_

@ Then w_ ! converges to w™" in the C**~! topology if €h (%) converges in
the uniform norm to 2kr. But 22F = ¢2Fg(Z) for |z| > €, so for € < |z],
eh(%) is equal to 2kx, and for ¢ > |z| both functions are bounded by a
constant multiple of e.

@ Hence eh(%) converges in the uniform norm to 2kx when € — 0. and this
gives the C%*~!_convergence of (5) to (6).
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Applications of deblogging

@ Convexity of the moment map image for b"*-symplectic manifolds
(GMW3).

e Quantization of b"-symplectic manifolds (GMW4).

@ Action-angle coordinates and refinement of KAM theorem (joint with
Arnau Planas).

@ Existence of b?*-contact forms and Weinstein's conjecture. (joint with
Cédric Oms).

@ The quest of periodic orbits. (ongoing)

@ Applications to celestial mechanics. (ongoing with Roisin Braddell,

Robert Cardona, Amadeu Delshams, Jacques Féjoz, Cédric Oms,
Michael Orieux)
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Deblogging integrable systems

Denote F™~(z) = (%fg(x))xi, and hence F!(z) = (%fg(x))xm_i.
The desingularized w, reads

m—1
We = Z E" " (z)dz A ap—i + .
=0
The desingularization of a b™-integrable system = (f1,..., fn) is given by:
m—1 1 m .
p = (f1 = colog(z) + Cigre e fn) = pe = (fre = ZQGE(%), f2r.0oy fn)
i=1 i=1
with Gi(z) = fom Fi(7)dr, and & = cg and ¢;_1 = —ic; if i # 0.

Key point: The Hamiltonian vector fields are the same.

Limits
When € tends to 0, u. tends to pu.
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Deblogging everything...

What to deblog?

¢ Integrable Systems
» Toric actions
* Forms..
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KAM for b**-symplectic manifolds

A 3-step proof of KAM:
@ Desingularize your integrable system.
@ Action-angle coordinates go to action-angle coordinates.

© Apply the KAM theorem for symplectic manifolds to get surviving tori.

Problem

For certain perturbations it is not possible to find a new Hamiltonian
function such that X% = X;f; restrict to admissible perturbations.

| A\

Convergence of the Kolmogorov set

The measure of the surviving tori (Kolmogorov set) is of order /3.
(parameter of the perturbation). Check the limit.

\
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Existence of contact structures

All 3-dimensional manifolds are contact (Martinet-Lutz) in higher
dimensions.

Theorem (Borman-Eliashberg-Murphy)

Any almost contact closed manifold is contact.
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Existence of b2 -contact structures

Theorem (M-Oms)

For any pair (M, Z) of contact manifold and convex hypersurface there
exists a b%*-contact structure for all k having Z as critical set.

A\

Corollary (of Giroux theorem)

For any 3-dimensional manifold and any generic surface Z, there exists a
bk _contact structure on M realizing Z as the critical set.
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What about periodic orbits?

? \

Weinstein's conjecture

The Reeb vector field of a contact compact manifold admits at least one periodic
orbit.

Taubes proved it in dimension 3.

Theorem (M-Oms)

Given a b**-contact manifold with convex critical set Z, there exists a family of

contact forms agreeing with a b**-contact form o outside of an e-neighbourhood

of Z. The Reeb vector fields R, converges to R“.

Theorem (M-Oms)

Let (M, «) be a closed b**-contact manifold of dimension 3, then there exists a
family of periodic orbits O, associated to the Reeb vector fields R..
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A variational principle to detect periodic orbits.

Periodic orbits on M «~ smooth maps x : R/Z — M This set is called the loop
space, LM.
If IIo(M) = e the action functional is well-defined:

Ay () = —/Du*w+/01 Hy (b)) dt,

(where u is an extension of x to the disk and we assume H; = Hy41)

A loop x is a critical point of the action functional Ay (x) if and only if t — x(t)
is a periodic solution of the Hamiltonian system

& = Xy(2(t)).

Key point: )
dAg(2)(Y) = /0 w(z — X (z(t)),Y)dt.

VY and w is non-degenerate and this works in the b-symplectic case too.
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Non-smooth periodic orbits

Find periodic "solutions” that go to infinity in the restricted three body
problem.

Problem: for odd m periodic orbits are not well-understood for folded
symplectic manifolds. In this case one may need to unfold
(Cannas-Guillemin-Woordward) to associate a family of symplectic
manifolds.
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