


DESINGULARIZING SINGULAR SYMPLECTIC STRUCTURES TO UNDERSTAND THEIR ASSOCIATED DYNAMICS
Given by: Eva Miranda

b-Poisson structures in the universe of Poisson Structures Assuming transversality and that the critical set is no empty
this is the set of Poisson structure:

Figure 1

Definition 1. Symplectic structure

ω ∈Ω2(M), ω− symplectic structure and dω = 0. So, ω is a closed 2-form and non degenerate.

b-vector field is a Poisson structure

• Π ∈ Λ2(T M)

• { f ,g}= Π(d f ,dg)

• Π = ∑
n
i=1

∂

∂ pi
∧ ∂

∂qi
; { f ,g} standard Poisson bracket

Review of General definition of a Poisson structure.

{,} : C∞(M)×C∞(M)→ K∞(M),

1 R- bilinear, antysimetric satisfying

2 Leibniz identity:{ f ,gh}= { f ,g}h+g{ f ,h}

3 Jacobi identity: { f ,{g,h}}+{g,{h, f}}+{h,{ f ,g}}= 0

Jacobi condition in b-vector fields can be summarized by:

Jacobi if and only if [Π,Π] = 0 (Schouten-Nijenhuis Bracket)

Schouten-Nijenhuis bracket is the extension of a Lie bracket from vector fields to multi-vector fields.

Example of a b-Poisson structure

Going to dimension two. Take a sphere and, the field h (see Figure 2).
Take the following Poisson structure:

• Π = h ∂

∂h ∧
∂

∂θ
this is a b-vector field.

• [Π,Π] = 0. In dimension 2 this is always satisfied.

In this case,

1. Z = {h = 0} . The equator is a critical set.

2. Π|Z = 0. In this case I will get the Zero Poisson structure.

1



Figure 2

Definition 2. Hamiltonian vector field

If I have a Poisson structure very easily we can associate to it a Hamiltonian vector field of f by defining:

X f = Π(df, ·)

This vector field is called the Hamiltonian vector field of f .

Definition 3 Consider D =
{

X f , f ∈C∞(M)
}

, it turns out that
D is integrable in the sense of Frobenius theorem so, I have a foliation, F , and this foliation is called the symplectic

foliation.

Example of b-Poisson structure in higher dimensions Consider a Poisson manifold (N2n−1,Π). Consider a Co-
dimension 1 Foliation F . F Symplectic foliation. Assume that there exist a vector field X that is transverse to this symplectic
foliation F and which is a Poisson vector field.

Figure 3

Then (S1×N, f (θ) ∂

∂θ
∧X +Π)) with function f vanishes linearly.
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The restricted 3-body problem

Simplified version of the general 3-body problem. One of the bodies has
negligible mass.
The other two bodies move independently of it following Kepler’s laws for
the 2-body problem.

Figure: Circular 3-body problem
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Planar restricted 3-body problem

The time-dependent self-potential of the small body is
U(q, t) = 1−µ

|q−q1| + µ
|q−q2| , with q1 = q1(t) the position of the planet with

mass 1− µ at time t and q2 = q2(t) the position of the one with mass µ.

The Hamiltonian of the system is
H(q, p, t) = p2/2− U(q, t), (q, p) ∈ R2 ×R2, where p = q̇ is the
momentum of the planet.

Consider the canonical change (X,Y, PX , PY ) 7→ (r, α, Pr =: y, Pα =: G).

Introduce McGehee coordinates (x, α, y,G), where r = 2
x2 , x ∈ R+,

can be then extended to infinity (x = 0).

The symplectic structure becomes a singular object

− 4
x3 dx ∧ dy + dα ∧ dG.

which extends to a b3-symplectic structure on R × T× R2.

The 2-body problem for µ = 0 is integrable with respect to the singular ω.
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Model for these systems

(bm-symplectic)

ω = 1
xm

1
dx1 ∧ dy1 +

∑
i≥2

dxi ∧ dyi

or (m-folded)
ω = xm

1 dx1 ∧ dy1 +
∑
i≥2

dxi ∧ dyi

Consider a system of two particles moving under the influence of the generalized
potential U(x) = −|x|−α, α > 0, with |x| the distance.

Double collision
The McGehee change of coordinates used to study collisions provides
bm-symplectic and m-folded symplectic forms for any m in the problem of a
particle moving in a central force field with general potential depending on m.
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The 3-body problem

Consider the system of three bodies with masses m1,m2,m3 and positions
q1 = (q1, q2, q3),q2 = (q4, q5, q6),q3 = (q7, q8, q9) ∈ R3.

Define the 9× 9 matrix M := diag(m1,m1,m1,m2,m2,m2,m3,m3,m3).

Assume central coordinates (m1q1 +m2q2 +m3q3 = 0).

Introduce the following “McGehee”-coordinates:

r :=
√
qTMq, s := q

r
, z := p

√
r. (1)

r = 0 corresponds to triple collisions. Essentially, these are spherical
coordinates since s lies on the unit-sphere in R9 with respect to the metric
given by M .
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The 3-body problem

The standard symplectic form
∑9
i=1 dqi ∧ dpi becomes in the new

coordinates (r, s1, . . . , s8, z1, . . . , z9).

8∑
i=1

(
si√
r
dr ∧ dzi +

√
rdsi ∧ dzi −

zi
2
√
r
dsi ∧ dr

)
+

+ 1√
m9rµ

(
µdr ∧ dz9 − r

8∑
i=1

misidsi ∧ dz9 + z9

2

8∑
i=1

misidsi ∧ dr

)
,

with µ := 1−
∑8
i=1 s

2
imi.

9∧
i=1

dqi ∧ dpi =

√
µr7

m9
ds1 ∧ dz1 ∧ ds2 ∧ dz2 ∧ . . . ∧ ds8 ∧ dz8 ∧ dr ∧ dz9,

It is a 7
2 -folded symplectic structure. (In the n-body problem m-folded

symplectic for a certain m).
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Other examples

Kustaanheimo-Stiefel regularization for n-body problem  folded-type
symplectic structures

two fixed-center problem via Appell’s transformation (Albouy)  
combination of folded-type and bm-symplectic structures  Dirac
structures.
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Physical examples and (singular) symplectic structures

• Symplectic structuresClassical Hamiltonian
systems

• b3-symplectic structure
Elliptic restricted 3-

body problem in Mc-
Gehee coordinates

• Folded-type symplectic structuresMcGehee regularization
3-body problem

• Folded symplectic structure
Kustaanheimo-Stiefel
regularization for n-

body problem

• bm-symplectic structures
• Folded-m symplectic structures

McGehee type change
for double collision
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b-Symplectic/b-Poisson structures

Definition
Let (M2n,Π) be an (oriented) Poisson manifold such that the map

p ∈M 7→ (Π(p))n ∈ Λ2n(TM)

is transverse to the zero section, then Z = {p ∈M |(Π(p))n = 0} is a
hypersurface called the critical hypersurface and we say that Π is a b-Poisson
structure on (M,Z).

b-symplectic, log-symplectic
Batakidis, Braddell, Cardona, Cavalcanti, Delshams, Frejlich, Gualtieri, Guillemin,
Kiesenhofer, Klaasse, Lanius, Songhao Li, Marcut, Mart́ınez-Torres, Miranda,
Oms, Osorno, Pelayo, Pires, Planas, Radko, Ratiu, Scott, Vera, Villatoro,
Weitsman
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Darboux normal forms

Theorem (Guillemin-M.-Pires)
For all p ∈ Z, there exists a Darboux coordinate system x1, y1, . . . , xn, yn
centered at p such that Z is defined by x1 = 0 and

Π = x1
∂

∂x1
∧ ∂

∂y1
+

n∑
i=2

∂

∂xi
∧ ∂

∂yi

Darboux for bm-symplectic structures

Π = xm1
∂

∂x1
∧ ∂

∂y1
+

n∑
i=2

∂

∂xi
∧ ∂

∂yi

or dually

ω = 1
xm1

dx1 ∧ dy1 +
n∑
i=2

dxi ∧ dyi
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Radko’s classification of b-Poisson surfaces

Radko classified these structures on compact oriented surfaces:

Geometrical invariants: The topology of S and the curves γi where Π
vanishes.

Dynamical invariants: The periods of the “modular vector field” along γi.

Measure: The regularized Liouville volume of S, V εh (Π) =
∫
|h|>ε ωΠ for h a

function vanishing linearly on the curves γ1, . . . , γn and ωΠ the “dual ”form
to the Poisson structure.

Other classification schemes: For bm-symplectic structures (not necessarily
oriented)  Scott, M.-Planas.
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Other compact examples.

The product of (R, πR) a Radko compact surface with a compact
symplectic manifold (S, ω) is a b-Poisson manifold.
corank 1 Poisson manifold (N, π) and X Poisson vector field ⇒
(S1 ×N, f(θ) ∂∂θ ∧X + π) is a b-Poisson manifold if,

1 f vanishes linearly.
2 X is transverse to the symplectic leaves of N .

We then have as many copies of N as zeroes of f .
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Poisson Geometry of the critical hypersurface

This last example is semilocally the canonical picture of a b-Poisson
structure .

1 The critical hypersurface Z has an induced regular Poisson structure
of corank 1.

2 There exists a Poisson vector field transverse to the symplectic
foliation induced on Z.
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The singular hypersurface

Theorem (Guillemin-M.-Pires)
If L contains a compact leaf L, then Z is the mapping torus of the
symplectomorphism φ : L→ L determined by the flow of a Poisson vector
field v transverse to the symplectic foliation.

This description also works for bm-symplectic structures.
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A dual approach...

b-Poisson structures can be seen as symplectic structures modeled
over a Lie algebroid (the b-cotangent bundle).
A vector field v is a b-vector field if vp ∈ TpZ for all p ∈ Z. The
b-tangent bundle bTM is defined by

Γ(U, bTM) =
{

b-vector fields
on (U,U ∩ Z)

}
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b-forms

The b-cotangent bundle bT ∗M is (bTM)∗. Sections of Λp(bT ∗M)
are b-forms, bΩp(M).The standard differential extends to

d : bΩp(M)→ bΩp+1(M)

A b-symplectic form is a closed, nondegenerate, b-form of degree 2.
This dual point of view, allows to prove a b-Darboux theorem and
semilocal forms via an adaptation of Moser’s path method because
we can play the same tricks as in the symplectic case.
We can introduce b-contact structures on a manifold M2n+1 as
b-forms of degree 1 for which α ∧ (dα)n 6= 0.

What else?
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Geometrical invariants

Theorem (Mazzeo-Melrose)
The b-cohomology groups of a compact M are computable by

bH∗(M) ∼= H∗(M)⊕H∗−1(Z).

Corollary (Classification of b-symplectic surfaces à la Moser)
Two b-symplectic forms ω0 and ω1 on an orientable compact surface are
b-symplectomorphic if and only if [ω0] = [ω1].

Indeed,

bH∗(M) ∼= H∗Π(M)

Eva Miranda (UPC) Hamiltonian Dynamics August 17, 2018 17 / 40



b-integrable systems

Definition
b-integrable system A set of b-functionsa f1, . . . , fn on (M2n, ω) such that

f1, . . . , fn Poisson commute.

df1 ∧ · · · ∧ dfn 6= 0 as a section of Λn(bT ∗(M)) on a dense subset of M .
ac log |x| + g

Example
The symplectic form 1

hdh ∧ dθ defined on the interior of the upper hemisphere
H+ of S2 extends to a b-symplectic form ω on the double of H+ which is S2.
The triple (S2, ω, log|h|) is a b-integrable system.

Example
If (f1, . . . , fn) is an integrable system on M , then (log |h|, f1, . . . , fn) on
H+ ×M extends to a b-integrable on S2 ×M .
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Action-angle coordinates for b-integrable systems
The compact regular level sets of a b-integrable system are (Liouville) tori.

Theorem (Kiesenhofer-M.-Scott)
Around a Liouville torus there exist coordinates
(p1, . . . , pn, θ1, . . . , θn) : U → Bn ×Tn such that

ω|U = c

p1
dp1 ∧ dθ1 +

n∑
i=2

dpi ∧ dθi, (2)

and the level sets of the coordinates p1, . . . , pn correspond to the Liouville
tori of the system.

Reformulation of the result
Integrable systems semilocally ! twisted cotangent lifta of a Tn action
by translations on itself to (T ∗Tn).

aWe replace the Liouville form by log |p1|dθ1 +
∑n

i=2 pidθi.
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Proof

1 Topology of the foliation. In a neighbourhood of a compact connected fiber
the b-integrable system F is diffeomorphic to the b-integrable system on
W := Tn ×Bn given by the projections log p1, p2, . . . , pn.

2 Uniformization of periods: We want to define integrals whose
(b-)Hamiltonian vector fields induce a Tn action. Start with Rn-action:

Φ : Rn × (Tn ×Bn) → Tn ×Bn

((t1, . . . , tn),m) 7→ Φ(1)
t1 ◦ · · · ◦ Φ(n)

tn (m).

Uniformize to get a Tn action with fundamental vector fields Yi.
3 The vector fields Yi are Poisson vector fields (check LYi

LYi
ω = 0).

4 The vector fields Yi are Hamiltonian with primitives σ1, . . . , σn ∈bC∞(W ).
In this step the properties of b-cohomology are essential. Use this action to
drag a local normal form (Darboux-Carathéodory) in a whole
neighbourhood.
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A picture...

Figure: Fibration by Liouville tori

Applications to KAM theory (surviving tori under perturbations) on b-symplectic
manifolds (Kiesenhofer-M.-Scott).
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KAM for b-symplectic manifolds

Theorem (Kiesenhofer-M.-Scott)
Consider Tn ×Bnr with the standard b-symplectic structure and the b-function
H = k log |y1|+ h(y) with h analytic. If the frequency map has a Diophantine
value and is non-degenerate, then a Liouville torus on Z persists under sufficiently
small perturbations of H. More precisely, if |ε| is sufficiently small, then the
perturbed system

Hε = H + εP

(with P (ϕ, y) = log |y1|+ f1(ϕ̃, y) + y1f2(ϕ, y) + f3(ϕ1, y1)) admits an
invariant torus T .
Moreover, there exists a diffeomorphism Tn → T close to the identity taking the
flow γt of the perturbed system on T to the linear flow on Tn with frequency
vector (k+εk′

c , ω̃).
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Toric manifolds and integrable systems

Theorem (Delzant)
Toric manifolds are classified by Delzant’s polytopes. More specifically, the
bijective correspondence between these two sets is given by the image of the

moment map: {toric manifolds} −→ {Delzant polytopes}
(M2n, ω,Tn, F ) −→ F (M)

µ = h

R

CP2 µ

(t1, t2) · [z0 : z1 : z2] = [z0 : eit1z1 : eit2z2]
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Delzant theorem on b-manifolds

Delzant theorem and convexity for Tk-actions (Guillemin-
M.-Pires-Scott).
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(Singular) symplectic manifolds

bm -Symplectic

Symplectic

Folded symplectic
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Déjà-vu...

Symplectic
manifolds

• Darboux theorem
• Delzant and 

convexity theorems
• Action-Angle

coordinates

b-Symplectic
manifolds

• Darboux theorem
• Delzant and 

convexity theorems
• Action-Angle

theorem

Folded symplectic
manifolds

• Darboux theorem
(Martinet)

• Delzant-type
theorems (Cannas da 
Silva-Guillemin-Pires)

• Action-agle theorem
(M-Cardona)
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Examples

Orientable 
Surface

• Is symplectic
• Is folded

symplectic
• (orientable 

or not) is b-
symplectic

CP2

• Is symplectic
• Is folded

symplectic
• Is not b-

symplectic

S4

• Is not
symplectic

• Is not b-
symplectic

• Is folded-
symplectic
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Desingularizing bm-symplectic structures

Theorem (Guillemin-M.-Weitsman)
Given a bm-symplectic structure ω on a compact manifold (M2n, Z):

If m = 2k, there exists a family of symplectic forms ωε which coincide
with the bm-symplectic form ω outside an ε-neighbourhood of Z and
for which the family of bivector fields (ωε)−1 converges in the
C2k−1-topology to the Poisson structure ω−1 as ε→ 0 .
If m = 2k + 1, there exists a family of folded symplectic forms ωε
which coincide with the bm-symplectic form ω outside an
ε-neighbourhood of Z.
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Consequences

Corollary
A manifold admitting a b2k-symplectic structure also admits a symplectic
structure.

Corollary
A manifold admitting a b2k+1-symplectic structure also admits a folded
symplectic structure.

Theorem (Cannas da Silva)
Any orientable compact 4-manifold admits a folded structure.

The converse is not true.
S4 admits a folded structure but no b-symplectic structure.
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Deblogging b2k-symplectic structures

ω = dx

x2k ∧ (
2k−1∑
i=0

αix
i) + β (3)

Let f ∈ C∞(R) be an odd smooth function satisfying f ′(x) > 0 for all
x ∈ [−1, 1],

0-1
1

and such that outside [−1, 1],

f(x) =
{

−1
(2k−1)x2k−1 − 2 for x < −1

−1
(2k−1)x2k−1 + 2 for x > 1
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Deblogging b2k-symplectic structures (Proof)

Scaling:
fε(x) := 1

ε2k−1 f
(x
ε

)
. (4)

Outside the interval [−ε, ε] ,

fε(x) =
{

−1
(2k−1)x2k−1 − 2

ε2k−1 for x < −ε
−1

(2k−1)x2k−1 + 2
ε2k−1 for x > ε

Replace dx
x2k by dfε to obtain

ωε = dfε ∧ (
2k−1∑
i=0

αix
i) + β

which is symplectic.
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Symplectic character

dαi = 0  ωε = dfε ∧ (
∑2k−1
i=0 αix

i) + β closed.
Outside U, ωε coincides with ω.
In U but away from Z,

ωnε = dfε
dx
x2kωn

which is nowhere vanishing.
To check that ωε is symplectic at Z, observe that

ωε = dfε ∧ (
2k−1∑
i=0

xiαi) + β = ε−2kf ′
(
x

ε

)
dx ∧ (

2k−1∑
i=0

xiαi) + β

which on the interval |x| < ε is equal to
ε−2k(f ′

(
x
ε

)
dx ∧ α0 +O(ε)) + β and hence

ωε
n = ε−2k(f ′

(
x

ε

)
dx ∧ α0 ∧ βn−1 +O(ε))

which is non-vanishing for ε sufficiently small dx ∧ α0 ∧ βn−1 6= 0.
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Convergence

To check

ω−1
ε = ε2kg

(x
ε

) ∂

∂x
∧ ∂

∂y
+ ∂

∂x2
∧ ∂

∂y2
+ · · ·+ ∂

∂xn
∧ ∂

∂yn
(5)

where g(x) = 1
f ′(x) , converges to

ω−1 = x2k ∂

∂x
∧ ∂

∂y
+ ∂

∂x2
∧ ∂

∂y2
+ · · ·+ ∂

∂xn
∧ ∂

∂yn
(6)

as ε tends to zero.
Consider h(x) = ( d

dx )2k−1g(x).
Then ω−1

ε converges to ω−1 in the C2k−1 topology if εh
(
x
ε

)
converges in

the uniform norm to 2kx. But x2k = ε2kg
(
x
ε

)
for |x| > ε, so for ε < |x|,

εh
(
x
ε

)
is equal to 2kx, and for ε > |x| both functions are bounded by a

constant multiple of ε.
Hence εh

(
x
ε

)
converges in the uniform norm to 2kx when ε→ 0. and this

gives the C2k−1-convergence of (5) to (6).
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Applications of deblogging

Convexity of the moment map image for bm-symplectic manifolds
(GMW3).
Quantization of bm-symplectic manifolds (GMW4).
Action-angle coordinates and refinement of KAM theorem (joint with
Arnau Planas).
Existence of b2k-contact forms and Weinstein’s conjecture. (joint with
Cédric Oms).
The quest of periodic orbits. (ongoing)
Applications to celestial mechanics. (ongoing with Roisin Braddell,
Robert Cardona, Amadeu Delshams, Jacques Féjoz, Cédric Oms,
Michael Orieux)
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New toy: Deblogging integrable systems
Denote Fm−iε (x) = ( d

dxfε(x))xi, and hence F iε (x) = ( d
dxfε(x))xm−i.

The desingularized ωε reads

ωε =
m−1∑
i=0

Fm−iε (x)dx ∧ αm−i + β.

Definition
The desingularization of a bm-integrable system µ = (f1, . . . , fn) is given by:

µ = (f1 = c0 log(x) +
m−1∑
i=1

ci
1
xi
, . . . , fn) 7→ µε = (f1ε =

m∑
i=1

ĉiG
i
ε(x), f2, . . . , fn)

with Giε(x) =
∫ x

0 F
i
ε (τ)dτ , and ĉ1 = c0 and ĉi−1 = −ici if i 6= 0.

Key point: The Hamiltonian vector fields are the same.

Limits
When ε tends to 0, µε tends to µ.
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Deblogging everything...

What to deblog?
• Integrable Systems
• Toric actions
• Forms..
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KAM for b2k-symplectic manifolds

A 3-step proof of KAM:
1 Desingularize your integrable system.
2 Action-angle coordinates go to action-angle coordinates.
3 Apply the KAM theorem for symplectic manifolds to get surviving tori.

Problem
For certain perturbations it is not possible to find a new Hamiltonian
function such that Xω

H = Xωε
Ĥ

restrict to admissible perturbations.

Convergence of the Kolmogorov set
The measure of the surviving tori (Kolmogorov set) is of order

√
δε

(parameter of the perturbation). Check the limit.
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Existence of contact structures

All 3-dimensional manifolds are contact (Martinet-Lutz) in higher
dimensions.

Theorem (Borman-Eliashberg-Murphy)
Any almost contact closed manifold is contact.
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Existence of b2k-contact structures

Theorem (M-Oms)
For any pair (M,Z) of contact manifold and convex hypersurface there
exists a b2k-contact structure for all k having Z as critical set.

Corollary (of Giroux theorem)
For any 3-dimensional manifold and any generic surface Z, there exists a
b2k-contact structure on M realizing Z as the critical set.

Eva Miranda (UPC) Hamiltonian Dynamics August 17, 2018 37 / 40



What about periodic orbits?

Weinstein’s conjecture
The Reeb vector field of a contact compact manifold admits at least one periodic
orbit.

Taubes proved it in dimension 3.

Theorem (M-Oms)
Given a b2k-contact manifold with convex critical set Z, there exists a family of
contact forms agreeing with a b2k-contact form α outside of an ε-neighbourhood
of Z. The Reeb vector fields Rε converges to Rα.

Theorem (M-Oms)
Let (M,α) be a closed b2k-contact manifold of dimension 3, then there exists a
family of periodic orbits Oε associated to the Reeb vector fields Rε.
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A variational principle to detect periodic orbits.
Periodic orbits on M ! smooth maps x : R/Z −→M This set is called the loop
space, LM .
If Π2(M) = e the action functional is well-defined:

AH(x) := −
∫
D

u∗ω +
∫ 1

0
Ht(x(t)) dt,

(where u is an extension of x to the disk and we assume Ht = Ht+1)

Theorem
A loop x is a critical point of the action functional AH(x) if and only if t 7→ x(t)
is a periodic solution of the Hamiltonian system

ẋ = Xt(x(t)).

Key point:

dAH(x)(Y ) =
∫ 1

0
ω(ẋ−Xt(x(t)), Y )dt.

∀Y and ω is non-degenerate and this works in the b-symplectic case too.
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Non-smooth periodic orbits

Find periodic ”solutions” that go to infinity in the restricted three body
problem.
Problem: for odd m periodic orbits are not well-understood for folded
symplectic manifolds. In this case one may need to unfold
(Cannas-Guillemin-Woordward) to associate a family of symplectic
manifolds.
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