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§1. Preliminaries

Any new results discussed are joint with Ben Antieau and Lennart Meier.
Much is not new and is based on work of Gepner, Lawson, and Mathew. In
this talk, the goal is to avoid getting too technical – we’ll start slowly and
get into technical things in a non-technical way.

Invertibility:

• Starting simple, consider a commutative ring R. x ∈ R is invertible
if there exists y ∈ R such that xy = 1. We denote the inverible
elements by Rx.

– If R is a field, then Rx is all nonzero elements.
– If R = Z, then Rx = Z/2Z = {±1}.

• Next, consider R-modules: x ∈ ModR to be invertible if there is a
y ∈ ModR such that x⊗ y ' 1ModR = R.

– If R is a field, then the invertible modules are precisely those
isomorphic to R (dimension one vector spaces).

– If R = Z, then there are no nontrivial Z-modules.
• Let’s move “one categorical level up”: take x ∈ ModModR . What

does this mean? The set-up requires some nontrivial technology
in higher category theory/ derived algebra. We want to think of
ModModR as a category of R-linear categories (hom objects have an
R-linear structure). Define an invertible object x ∈ ModModR , to be
category such that “x⊗ y” ' 1 = ModR .

Considering the invertible elements here, we get what we’ll call
the Brauer group Br(B).

Even in the most recent definitions, we need to “restrict” the category
ModModR to impose some “smallness” constraints. But before we talk more
about Brauer groups, we need to enlarge the world of rings.

§2. Rings in homotopy theory

In homotopy theory, we can consider ordinary rings (as discrete ring ob-
jects in an appropriate sense), and might want to think about topological
rings on occasion But the main “rings” are multiplicative generalized coho-
mology theories (ring objects in a suitable ∞-category). For example:

• H∗(−, R), ordinary cohomology with coefficients in a ring R.
• KU∗(−), complex topological K-theory.
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• KO∗(−), real topological K-theory.
• TMF ∗(−), a cohomology theory which is related to elliptic curves

and topological modular forms.

These rings live in the category Sp of spectra. This is a symmetric
monoidal stable ∞-category, with monoidal unit S0, the sphere spectrum,
which is built from the topological spheres S0, S1, S2, . . . . A few notes:

• In the category of spectra, we can take homotopy groups. πkX =
[Sk, X], which form a graded abelian group. (If k < 0, we define
πkX = [S0, Sk ⊗X].
• If R is a commutative ring, then π∗X form a a graded commutative

ring.
• We can build spectra as sequences of spaces, and have the loops

infinity/ suspension infinity adjuction,

Σ∞ : Spaces∗ ↔ Sp : Ω∞.

Σ∞ gives a sequential spectrum by tensoring with S1.

Now we want to consider “invertible things” in a commutative ring spectrum
R. Ω∞R is a space (or more precisely homotopy type), with a multiplicative
structure, and Ω∞R→ π0R. Since π0R is a ring, we can consider its invert-
ible elements. Looking at the fiber over this subset, we obtain the subset
Rx ⊂ Ω∞R of invertible components.

In fact, Rx = Ω∞R̃ for some spectrum R̃, so we can talk about a spectrum
of units as well.

Note that π0R
x = (π0R)x, and πtR

x = πtR for t > 0, so we have a good
handle on the homotopy groups of the spectrum of invertible elements in
terms of those of R.

§3. Pic in homotopy theory

ModR is a symmetric monoidal ∞-category if R is a commutative ring
spectrum.

3.1. Example. If R is discrete, the ho(ModR) is the derived category D(R).

3.2. Definition. Mimicking previous definitions, let Pic(R) denote the set
of x ∈ ModR such that there exists y ∈ ModR with x⊗ y ' 1ModR . Because
ModR is an infinity category, Pic(R) is in fact a space of invertible R-
modules.

Categorically, this is the sub ∞-groupoid (of the category of R-modules)
spanned by invertible objects. What kind of space is this?

• π0Pic(R) = Pic(R).
• Pic is not just a space but a grouplike E∞-space. That is, Pic(R)

has a group structure, and is in the image of Ω∞(−).
• Taking loops, consider Ω1ModR

Pic(R) = Rx, the spectrum of units

discussed before. This tells us about the homotopy groups of the
Picard space.
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§4. Brauer groups in homotopy theory

The original definition of the Brauer group (due to Brauer?) only applies
to fields. For k a field, Br(k) is defined as the set of central simple algebras
over k, modulo Morita equivalence. This has a group structure induced by
the tenor product of algebras. For example:

• Br(R) = Z/2.
• Br(Qp) = Q/Z (via the Hasse invariant).

But this definition doesn’t even translate to discrete rings. A version for
rings was developed by Auslander–Goldman. For homotopy theory (spec-
tra), work has been done by Baker–Richter–Szymik, Antieau–Gepner (in the
∞-categorical setting), Antieau-Lawson, Toën, and others. The upshot is
that there’s a wealth of new technology to do with Brauer groups.

For the set up: we need some sophisticated technology to deal with “de-
rived” things. The substitute for central algebras are Azumaya algebras.

4.1. Definition. An associative R-algebra A is an Azumaya algebra if
ModA is an invertible object in ModModR (the categeory of R-linear cate-
gories vaguely discussed before).

If R is a spectrum, this is equivalent to all of the following three conditions
being satisfied:

• A is dualizable as an R-module.
• A⊗Aop ' End(A).
• The functor A⊗ (−) is conservative.

As R becomes constrained (e.g. R connective, meaning no negative ho-
motopy groups; or R discrete), the definitions recover more familiar no-
tions. This definition is not in the literature – usually one does not work
with ModModR . One should look at something compactly generated or some
other smallness constraint.

4.2. Remark. Question from audience: does this definition recover the
classical thing for an ordinary ring?
Answer: You’ll get (some sort of) derived Brauer group. There are addi-
tional “derived” Azumaya algebras that appear.

4.3. Definition. Let Az(R) ⊂ Pic(ModModR) =: BrBig(R) be the con-
nected components containing modules over Azumaya algebras.

Then ΩModR(Az(R)) ' Pic(R), so this is a further delooping of Pic(R)
and we have a way to compute homotopy groups from those of R.

§5. Why would you care?

Answer 1: descent. If we consider the classical versions, descent fails for
Picard/ Brauer groups.

5.1. Claim. Pic(−), Br(−) satsify étale and Galois descent. (Due to Antieau–
Gepner, Gepner–Lawson).

5.2. Remark. In homotopy theory, Galois extensions are not necessarily
étale. In fact, the interesting Galois ones are not.
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5.3. Example. TMF = Γ(Mell,Otop). We can’t say much about Brauer
groups, but we can compute the locally étale Azumaya algebras:

LetAz(TMF ) ' Z/24 ↪→ LetAz(Mell,Otop) � Z/2⊕∞,
where the last sum is countably infinite

§6. Reference suggestions, in response to audience questions

A good place for some definitions is an algebro-geometric paper by Antieau–
Gepner, “Brauer groups and étale cohomology in derived algebraic geome-
try.” https://arxiv.org/abs/1210.0290

For learning about spectra, the speaker suggested a historical approach.
The classical place to start is Adams’ Blue Book (“Stable homotopy and
generlised homology,” in particular Part III).

Mike Hill is working on a book about how to use derived AG (he spoke
up to say this is forthcoming),


