Birational geometry of varieties of maximal Albanese dimension

Rita Pardini

UNIVERSITÀ DI PISA

Connections for women MSRI, January 28–30, 2019

KOD CONTRACT A BOARD COMPARTEM

[Irregular varieties](#page-2-0)

[Setup and Clifford-Severi inequalities](#page-10-0)

[The eventual map](#page-17-0)

[Covering trick and continuous rank for](#page-21-0) R-divisors

KEL KALIKI (ELKEL KALA

[Idea of proof of the inequalities](#page-24-0)

A complex torus of dimension *q* is a quotient *T* := *V*/Λ, where:

- *V* is a *q*-dimensional C-vector space
- $\Lambda \subset V$ is a <u>lattice</u>, namely $\Lambda \cong \mathbb{Z}^{2q}$ and $<\Lambda>_{\mathbb{R}}=V$.

The quotient map $p: V \to T$ is the universal cover, so V is a complex manifold and $\pi_1(V) = \Lambda$.

T is an abelian variety if there is an embedding $T \hookrightarrow \mathbb{P}^N$.

Riemann's bilinear relations

 $T = V/\Lambda$ is an abelian variety iff there exists a positive definite Hermitian form *H* on *V* such that $Im H(\Lambda, \Lambda) \subseteq \mathbb{Z}$.

H as above is a polarization. If $q \geq 2$, not every complex torus *T* has a polarization.

A smooth complex projective variety *X* is irregular if $H^0(X, \Omega^1_X) \neq 0$; $q(X) := h^0(X, \Omega^1_X)$ is the <u>irregularity</u>. Being irregular is a topological property: $b_1(X) = 2q(X)$.

If $\mathcal{T} = \mathsf{V}/\mathsf{\Lambda}$ is a complex torus, then for any $\psi \in \mathsf{V}^\vee$ the 1-form *d*ψ descends to a global holomorphic form; $V^{\vee} \to H^0(T, \Omega^1_T)$ is an isomorphism, so X is irregular and $q(X) := q$.

KORKAR KERKER E VOOR

More examples: curves of genus *g* > 0, complete intersections in abelian varieties, $X \times Y$ with X irregular, varieties that dominate an irregular variety. . .

In particular, if $f: X \to T = V/\Lambda$ is nonconstant, then X is irregular.

Let $\omega_i = f^* d z_i$, where $z_1, \ldots z_q$ are coordinates on V; locally near any $x_0 \in \mathcal{X}$ the map f lifts to $\mathsf{V} \cong \mathbb{C}^q$ as

$$
x \mapsto \left(\int_{x_0}^x \omega_1, \dots, \int_{x_0}^x \omega_q\right) + c
$$

for some $c \in V$.

To get a similar global expression, we need to mod out the periods, i.e., the integrals $(\int_{\gamma} \omega_1, \ldots, \int_{\gamma} \omega_q)$ for $\gamma \in H_1(X,\mathbb{Z})$.

Warning: if $\omega_1, \ldots \omega_k$ are holomorphic 1-forms, in general the periods $(\int_\gamma\omega_1,\ldots,\int_\gamma\omega_k)$ do **not** form a lattice in $\mathbb{C}^k.$

Hodge theory ⇒ get a lattice if one takes **all** the holomorphic 1-forms:

- set $V := H^0(X, \Omega_X^1)^{\vee}$
- the image $\Lambda \subset V$ of the map $H_1(X,\mathbb{Z}) \to V$ defined by $\gamma\mapsto \int_{\gamma}$ – is a lattice.

So we have the Albanese torus Alb(*X*) := *V*/Λ and the Albanese map $a_X \colon X \to \mathsf{Alb}(X),\, x \mapsto \int_{x_0}^x-,$ where $x_0 \in X$ is a base point.

Alb(*X*) is actually an **abelian variety** (the polarization is induced by a choice of an ample line bundle on *X*).

Universal property: given $f: X \rightarrow T$ holomorphic map, f factorizes uniquely as $X \stackrel{a_X}{\to} \mathsf{Alb}(X) \to \mathcal{T}.$

If *f*(*X*) generates *T* as a group then *T* is an abelian variety.

The Albanese dimension of *X* is albdim(*X*) := dim($a_X(X)$); *X* has maximal Albanese dimension (m.A.d) if albdim(X) = dim $X =: n$.

This is a topological property: albdim $(X) > k$ iff $\wedge^{2k} H^1(X,{\mathbb{C}}) \to H^{2k}(X,{\mathbb{C}})$ is not the zero map.

Let *L* be a big line bundle, i.e. s.t. |*L* [⊗]*m*| gives a generically injective map $X \to \mathbb{P}^N$ map for $m \gg 0.$ A numerical measure of bigness is the volume

$$
\text{vol}(L) := \lim_m n! \frac{h^0(X, L^{\otimes m})}{m^n} \in \mathbb{R}_{>0}
$$

KOD KAD KED KED E VOOR

Note: if *L* is nef, $vol(L) = L^n$.

Let $\omega_X = \mathcal{O}_X(K_X)$ canonical sheaf: X is of general type if ω_X is big. For *X* of general type we consider two numerical birational invariants:

$$
\mathsf{vol}(X) := \mathsf{vol}(\omega_X) \qquad \text{and} \quad \chi(X) := \chi(\omega_X) = \sum_{i=0}^n (-1)^i h^i(X, \omega_X).
$$

KORKARA REPART AND ACT

Geographical problem: what are the restrictions on vol(*X*) and $\chi(X)$? and what if X is irregular/m.A.d.?

If $n = 2$, then vol (X) , $\chi(X) \in \mathbb{N}_{>0}$ and:

- vol $(X) \leq 9_X(X)$ (Bogomolov–Miyaoka–Yau inequality)
- vol(X) > 2 $_X(X)$ 6 (Noether inequality)
- vol $(X) > 2_X(X)$ if X is irregular (Bombieri)
- vol $(X) > 4_X(X)$ if X is m.A.d. ("Severi inequality", P. '04)
- If $n > 2$ and X of m.A.d. then:
	- $\chi(X) > 0$
	- vol (X) > 2*n*! $_X(X)$ ("Generalized Severi inequality", Barja '14 and Tong Zhang '14)

KORKARA REPART AND ACT

We set $Pic^0(X) := \{$ topol. trivial 1. bundles on $X\}/ \cong;$ if $\mathcal{T} = \mathcal{V}/\Lambda$, Pic $^{0}(\mathcal{T})$ the <u>dual torus</u>, a complex torus of dimension *q*. In general, the map a^*_X : Pic⁰(Alb (X)) \rightarrow Pic⁰(X) is an isomorphism.

Generic vanishing (Green–Lazarsfeld '87): for *X* m.A.d., $H^i(X,\omega_X\otimes\alpha)=0$ for $i>0$ and $\alpha\in {\sf Pic}^0(X)$ general.

So for $\alpha \in \mathsf{Pic}^0(X)$ general:

•
$$
\chi(X) = \chi(\omega_X) = \chi(\omega_X \otimes \alpha) = h^0(\omega_X \otimes \alpha) \geq 0
$$

• the generalized Severi inequality can be written $\mathsf{vol}(\omega_X) \geq 2n! h^0(\omega_X \otimes \alpha).$

KORKAR KERKER E VOOR

Generalized set-up:

a: $X \rightarrow A$ a map to an abelian variety such that:

- *a* is generically finite onto its image
- Pic $^{0}(A) \rightarrow \mathsf{Pic}^{0}(X)$ is injective

We set: $q := \dim A$ and we fix $L \in Pic(X)$.

The continuous rank of *L* (with respect to *a*) is:

$$
h^0_a(X,L) := \min\{h^0(X,L\otimes\alpha) \mid \alpha \in \text{Pic}^0(A)\}.
$$

KOD CONTRACT A BOARD COMPARTEM

(generic vanishing $\Rightarrow h^0_a(\omega_X) = \chi(X)$).

Basic diagram:

Let *d* be an integer and let μ_d : $A \rightarrow A$ be multiplication by *d*;

$$
X^{(d)} \xrightarrow{\widetilde{\mu_d}} X
$$

\n
$$
a_d \downarrow \qquad \qquad a_d
$$

\n
$$
A \xrightarrow{\mu_d} A
$$

 $X^{(d)}$ is connected,

 $\widetilde{\mu_{\mathsf{d}}}$ is a degree d^{2q} étale cover,
... the map *a^d* satisfies the same properties as *a*. Set $L^{(d)} := \widetilde{\mu_d}^* L$; we wish to study $|L^{(d)} \otimes \alpha|$ for $\alpha \in \text{Pic}^0(A)$
conoral and $d \gg 0$ general and $d \gg 0$.

KOD KAD KED KED E VOOR

Multiplicative property of the continuous rank:

$$
h^0_{a_d}(X_d,L^{(d)})=d^{2q}h^0_a(X,L)
$$

If $h_a^0(L) > 0$, we define the <u>slope</u> $\lambda(L) := \frac{\text{vol}(L)}{h_a^0(L)}$.

Note: mult. property $\Rightarrow \lambda(L^{(d)}) = \lambda(L)$

Key remark (Barja): if $h_a^0(X, L) > 0$, then $|L^{(d)}|$ gives a generically finite map for $d \gg 0$. \Rightarrow ${\mathsf L}^{(d)}$ is big \Rightarrow ${\mathsf L}$ is big and $\lambda({\mathsf L})>0.$

KORKAR KERKER E VOLCH

A Clifford-Severi inequality is an inequality of the form

 $\lambda(L) \geq C(n),$

where *C*(*n*) > 0 is a constant depending on *n*.

Theorem (Barja '14):

- if *L* is nef, then $\lambda(L) \ge n!$ (1st C-S inequality)
- if *L* is nef and $\omega_X \otimes L^{-1}$ is pseff, then $\lambda(L) \geq 2n!$ (2*nd* C-S inequality)

The generalized Severi inequality is a consequence of Barja's Theorem for $L = \omega_X$.

KOD CONTRACT A BOARD COMPARTEM

In recent joint work with Barja and Stoppino we introduced:

• a new type of asymptotic study for line bundles on m.A.d. varieties ("eventual map")

KOD CONTRACT A BOARD COMPARTEM

• the "continuous continuous rank function".

We have used these to drastically simplify the proofs of the known Clifford-Severi inequalities and improve them.

Theorem (Refined C-S inequalities, Barja–P.–Stoppino '16): If $h^0_a(L) > 0$, then:

 \bigcirc $\lambda(L) \geq n!$ 2 $\lambda(L) \geq 2n!$ if $\omega_X \otimes L^{-1}$ pseff 3 $\lambda(L) \geq \frac{5}{2}$ $\frac{5}{2}$ *n*! if ω _X ⊗ L^{−1} pseff, *n* ≥ 2 and *a* gen. inj. 4 $\lambda(L) \geq \frac{9}{4}$ 4 *n*! if ω*^X* ⊗ *L* [−]¹ pseff, *n* ≥ 2 and *a* is not composed with an involution.

KORKARA REPART AND ACT

Remarks:

- (1) and (2) were proven by Barja for *L* nef.
- All statements are simplified versions (need a version for pairs $T \subset X$ for the proof).
- If X is a minimal surface and $L = \omega_X$, then (3) gives $K_X^2 \geq 5\chi(X)$; it is conjectured that $K_X^2 \geq 6\chi(X)$ when *a* is gen. injective.

KOD KAD KED KED E VOOR

• (4) extends a result of Lu-Zuo for $n = 2$ and $L = \omega_X$

The eventual degree

KOD CONTRACT A BOARD COMPARTEM

Assume $h_a^0(L) > 0$.

For $d \in \mathbb{N}$, let $m_l(d)$ be the degree of the map given by $|L^{(d)} \otimes \alpha|$ for $\alpha \in \text{Pic}^0(A)$ general.

The eventual degree of *L* is:

 $m_l := \min\{m_l(d) \mid d \in \mathbb{N}\}.$

Remark: $m_l < +\infty$ (by Baria's observation) and $m_l(d) = m_l$ for $d \gg 0$.

The eventual map

KORKAR KERKER E VOLCH

Theorem (Eventual factorization):

There exists a generically finite dominant map $\varphi_l : X \to Z$ of degree *m^L* (the eventual map) such that:

 (a) the map *a* factorizes as $X \stackrel{\varphi_L}{\rightarrow} Z \rightarrow A$

(b) consider the cartesian diagram:

$$
X^{(d)} \xrightarrow{\varphi^{(d)}} Z^{(d)} \longrightarrow A
$$

\n
$$
\widetilde{\mu_d} \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \mu_d
$$

\n
$$
X \xrightarrow{\varphi_L} Z \longrightarrow A
$$

then $|L^{(d)}\otimes \alpha|$ is birationally equivalent to $\varphi^{(d)}$ for α general and $d \gg 0$.

Remarks:

- the statement is birational: φ_L is unique up to birational isomorphism
- this is a new way of associating a map with a line bundle
- there is a formal analogy between the eventual map and the Iitaka fibration, in a situation where the Iitaka fibration is birational and gives no information.
- For $L = \omega_X$ and $A = Alb(X)$, we have the eventual paracanonical map, which is a new geometrical object attached to *X*.

KORKAR KERKER E VOLCH

Corollary:

- If *a* is birational, then φ_L is birational
- If *a* is not composed with an involution, then $m_l \neq 2$. This will be crucial in proving some of the numerical inequalities.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q ·

Covering trick I:

KORKAR KERKER E VOLCH

(pullbacks from *A* become divisible)

$$
X^{(d)} \xrightarrow{\widetilde{\mu_d}} X
$$

\n
$$
a_d \downarrow \qquad \qquad a_d
$$

\n
$$
A \xrightarrow{\mu_d} A
$$

Fix *H* very ample on *A* and set $M = a^*H$, $M_d := a^*_dH$. The line bundle M_d is big and base point free.

On the other hand, $\mu_d^* H \equiv_{alg} d^2 H$, so $\frac{1}{d^2} M^{(d)} \equiv_{\mathsf{Pic}^0(A)} M_d$ is an integral class.

Let $x \in \mathbb{Q}$ and let $d \in \mathbb{N}$ be such that $d^2x = e \in \mathbb{Z}$. We set:

 $\phi(x) := \frac{1}{d^{2q}} h_{a_d}^0 \left(X^{(d)}, (L + xM)^{(d)} \right) = \frac{1}{d^2}$ $\frac{1}{d^{2q}}h^0_{a_d}(X^{(d)}, L^{(d)} + eM_d)$ By the multiplicative property of the continuous rank, this is well defined.

Properties: For $x_1 < x_2 \in \mathbb{Q}$ we have:

$$
\bullet \ \phi(X_1) \leq \phi(X_2)
$$

• $2\phi(\frac{x_1+x_2}{2}) \leq \phi(x_1)+\phi(x_2)$ ("midpoint property")

 \implies ϕ extends to a convex continuous non decreasing function $\phi: \mathbb{R} \to \mathbb{R}$.

KORKAR KERKER E VOLCH

So the function ϕ is right and left differentiable at every point and differentiable outside a countable set.

Proposition: for any $x \in \mathbb{R}$:

$$
D^{-}\phi(x):=\lim_{d\to+\infty}\frac{1}{d^{2q-2}}h_{a_d}^{0}(X_{|M_d},(L+ xM)^{(d)}),
$$

KORKARA REPART AND ACT

where $M_d \in |M_d|$ is general and $h^0_a(X_{|M_d},L+ xM)$ is the restricted continuous rank.

Idea of the proofs

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Consider the 2*nd* Clifford–Severi inequality:

$$
\omega_X\otimes L^{-1} \text{ pseff} \implies \text{vol}(L) \geq 2n! h^0_a(X,L)
$$

The proof is by induction on *n*. We start with $n = 1$:

Covering trick, II:

KID K@ KK B K B K B 1040

(elimination of lower order terms in inequalities)

$$
X^{(d)} \xrightarrow{\widetilde{\mu_d}} X
$$

\n
$$
a_d \downarrow \qquad \qquad a_d
$$

\n
$$
A \xrightarrow{\mu_d} A
$$

Since deg $(\omega_X \otimes L^{-1}) \geq 0,$ we apply Clifford's theorem to $L^{(d)}$:

$$
d^{2q}\,deg\,L=deg\,L^{(d)}\geq 2h^0(L^{(d)})-2\geq d^{2q}h^0_a(L)-2
$$

divide by d^{2q} and let $d \to \infty$:

$$
\deg L \ge 2h_a^0(L), \quad \text{i.e., } \lambda(L) \ge 2
$$

Inductive step:

KO KKO K S A B KKO K S A V KKO

Set $\psi(x) := \text{vol}(L + xM)$ and $\bar{x} := \max\{t \mid \text{vol}(L + xM) = 0\}.$

Theorem (Lazarsfeld–Mustață, Boucksom–Favre–Jonsson '09):

 ψ is differentiable for $x > \bar{x}$ and one has:

 $\psi'(x) = n \text{vol}_{X|M}(L + xM)$

Inductive hypothesis \implies

$$
\psi'(x) = n \operatorname{vol}_{X|M}(L + xM) \geq n \cdot 2(n-1)!\phi'(x) = 2n!\phi'(x)
$$

Taking $\int_{-\infty}^0$ of both sides of the above equation gives: $vol(L) \geq 2n! h_d^0(L)$.

KO KKO K S A B KKO K S A V KKO

Proof of the refined inequalities (when *a* is either generically injective or not composed with an involution):

- since $\lambda(L) = \lambda(L^{(d)})$ we may replace X by $X^{(d)}$, for $d \gg 0$, and assume that the map given by |*L*| is replaced by the eventual map.
- in the first inductive step $(n = 2)$ use refined versions of the inequality, that hold when |*L*| is either birational or not composed with an involution.

KORKAR KERKER E VOLCH