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A complex torus of dimension g is a quotient T := V//A, where:
V is a g-dimensional C-vector space
A C Vis a lattice, namely A =2 7?9 and < A >p= V.

The quotient map p: V — T is the universal cover, so V' is a
complex manifold and = (V) = A.

T is an abelian variety if there is an embedding T — PN.

T = V/Nis an abelian variety iff there exists a positive definite
Hermitian form H on V such that ImH(A, A) C Z.

H as above is a polarization. If g > 2, not every complex torus
T has a polarization.



A smooth complex projective variety X is irregular if
HO(X,Q)) # 0; q(X) := hO(X, Q) ) is the irregularity.
Being irregular is a topological property: by(X) = 2q(X).

If T= V/Ais a complex torus, then for any v € VV the 1-form
dq descends to a global holomorphic form;
VY — HO(T,Ql) is an isomorphism, so X is irregular and

q(X):=q.

More examples: curves of genus g > 0, complete
intersections in abelian varieties, X x Y with X irregular,
varieties that dominate an irregular variety. . .



In particular, if f: X — T = V//Ais nonconstant, then X is
irregular.

Let w; = f*dz;, where zy, ... z4 are coordinates on V; locally
near any xp € X the map f liftsto V = C9 as

X X
X*—></ W1,...,/ (.Uq)‘i‘c
X0 Xo

To get a similar global expression, we need to mod out the
periods, i.e., the integrals (fA/ Wiy enny f7 wq) for v € Hy(X,Z).

for some c € V.

Warning: if wy, ... wy are holomorphic 1-forms, in general the
periods ([, w1,..., [, wk) do not form a lattice in Ck.



Hodge theory = get a lattice if one takes all the holomorphic
1-forms:
set V := HO(X, QL)Y
the image A C V of the map H;(X,Z) — V defined by
v+ [~ is alattice.

So we have the Albanese torus Alb(X) := V//A and
the Albanese map ax: X — Alb(X), x — [ —, where xo € X
is a base point.

Alb(X) is actually an abelian variety (the polarization is
induced by a choice of an ample line bundle on X).

Universal property: given f: X — T holomorphic map, f
factorizes uniquely as X 2% Alb(X) — T.

If f(X) generates T as a group then T is an abelian variety.



The Albanese dimension of X is albdim(X) := dim(ax(X));
X has maximal Albanese dimension (m.A.d) if
albdim(X) = dim X =: n.

This is a topological property: albdim(X) > k iff
AZKHY(X,C) — H?K(X,C) is not the zero map.

Let L be a big line bundle, i.e. s.t. [L*™| gives a generically
injective map X — PN map for m > 0.
A numerical measure of bigness is the volume

HO(X, LEm)
n

vol(L) := Iirrrp n! € Ryp

Note: if L is nef, vol(L) = L™.



Let wx = Ox(Kx) canonical sheaf: X is of general type if wy is
big.

For X of general type we consider two numerical birational
invariants:

n

vol(X) :=vol(wx)  and x(X) :=x(wx) =D _(=1)'H(X,wx).
i=0

Geographical problem: what are the restrictions on vol(X)
and x(X)? and what if X is irregular/m.A.d.?



If n =2, then vol(X), x(X) € N5 and:

(X)
vol(X) < 9x(X) (Bogomolov—Mlyaoka—Yau inequality)
vol(X) > 2x(X) — 6 (Noether inequality)
vol(X) > 2x(X) if X is irregular (Bombieri)
vol(X) > 4x(X) if Xis m.A.d. (“Severi inequality”, P. ’04)

If n > 2 and X of m.A.d, then:
x(X) >0

vol(X) > 2n!x(X) (“Generalized Severi inequality”, Barja
14 and Tong Zhang '14)



We set Pic®(X) := {topol. trivial 1. bundles on X}/ =;

it T= V/A, Pic®(T) the dual torus, a complex torus of
dimension q.

In general, the map aj: Pic®(Alb(X)) — Pic®(X) is an
isomorphism.

Generic vanishing (Green-Lazarsfeld '87): for X m.A.d.,
H(X,wx ® a) = 0 for i > 0 and a € Pic®(X) general.

So for o € Pic®(X) general:
X(X) = x(wx) = x(wx ® a) = K (wx @ a) > 0

the generalized Severi inequality can be written
vol(wy) > 2nth%(wx ® a).



Generalized set-up:

a: X — Aamap to an abelian variety such that:
a is generically finite onto its image
Pic®(A) — Pic®(X) is injective

We set: g := dim A and we fix L € Pic(X).

The continuous rank of L (with respect to a) is:

h3(X, L) := min{i°(X,L® a) | a € Pic°(A)}.

(generic vanishing = h(wx) = x(X))-



Basic diagram:

Let d be an integer and let ug: A — A be multiplication by d;

X _Hd, x

adl la

A A

X(9) is connected,

lig is a degree d?9 étale cover,

the map a4 satisfies the same properties as a.

Set L(@) := [ig*L; we wish to study |L(?) @ | for o € Pic®(A)
general and d > 0.



Multiplicative property of the continuous rank:

h3,(Xa, L) = d?Ih§(X, L)

If 3(L) > 0, we define the slope A(L) := X
Note: mult. property = A(L(9)) = \(L)
Key remark (Barja): if h3(X, L) > 0, then |L(9)| gives a

generically finite map for d > 0.
= L9 is big = L is big and \(L) > 0.



A Clifford-Severi inequality is an inequality of the form

A(L) = C(n),
where C(n) > 0 is a constant depending on n.

Theorem (Barja '14):
if Lis nef, then A(L) > n! (15! C-S inequality)
if L is nef and wy ® L~ is pseff, then A\(L) > 2n!
(2" C-S inequality)

The generalized Severi inequality is a consequence of Barja’s
Theorem for L = wy.



In recent joint work with Barja and Stoppino we introduced:

a new type of asymptotic study for line bundles on m.A.d.
varieties (“eventual map”)

the “continuous continuous rank function”.

We have used these to drastically simplify the proofs of the
known Clifford-Severi inequalities and improve them.



Theorem (Refined C-S inequalities, Barja—P.—Stoppino ’16):
If KY(L) > 0, then:

A(L) > n!

ML) > 2n!if wy @ L1 pseff

A(L) > 3 nlif wy ® L' pseff, n > 2 and a gen. inj.

A(L) > 2 nlif wy ® L' pseff, n > 2 and ais not composed

with an involution.



Remarks:
(1) and (2) were proven by Barja for L nef.

All statements are simplified versions (need a version for
pairs T C X for the proof).

If X is a minimal surface and L = wy, then (3) gives

KZ > 5x(X); it is conjectured that K2 > 6x(X) when ais
gen. injective.

(4) extends a result of Lu-Zuo forn=2 and L = wx



Assume h3(L) > 0.

For d € N, let m;(d) be the degree of the map given by
IL@ @ af for a € Pic®(A) general.

The eventual degree of L is:

m; :=min{m(d) | d € N}.

Remark: m; < +oo (by Barja’s observation) and m;(d) = m;
for d > 0.



Theorem (Eventual factorization):
There exists a generically finite dominant map ¢, : X — Z of
degree m; (the eventual map) such that:

the map a factorizes as X %5 Z — A

consider the cartesian diagram:

x(@ £, #0) A
AL b
X 25 Z A

then |L(9) @ | is birationally equivalent to (%) for o
general and d > 0.



Remarks:
the statement is birational: ¢, is unique up to birational
isomorphism
this is a new way of associating a map with a line bundle
there is a formal analogy between the eventual map and
the litaka fibration, in a situation where the litaka fibration
is birational and gives no information.
For L = wx and A = Alb(X), we have the

eventual paracanonical map, which is a new geometrical
object attached to X.




Corollary:
If ais birational, then ¢, is birational
If ais not composed with an involution, then m; # 2.

This will be crucial in proving some of the numerical
inequalities.



(pullbacks from A become divisible )

Xd) _Fd_, x
| |
A A
Fix H very ample on A and set M = a*H, My := ajH.
The line bundle My is big and base point free.

On the other hand, ;H =aig d%H, 50 Z M@ =pi0 4 My is an
integral class.



Let x € Q and let d € N be such that d2x = e € Z. We set:

3(x) = Shhd (X, (L+ xM)@D) = LAY (X, L) 1 eMy)
By the multlpllcatlve property of the contlnuous rank, this is well
defined.

Properties: For x; < xo € Q we have:
o(x1) < B(x2)
26(*15%2) < ¢(x1) + ¢(x2) (“midpoint property”)

—> ¢ extends to a convex continuous non decreasing function
¢: R —=R.



So the function ¢ is right and left differentiable at every point
and differentiable outside a countable set.

Proposition: for any x € R:

_ . 1
D7(x) = lim i o, (X, (L xM)(),

where My € [My| is general and h3(Xu,, L + xM) is the
restricted continuous rank.




Consider the 2" Clifford—Severi inequality:
wx ® L~ pseff = vol(L) > 2n'h3(X, L)

The proof is by induction on n.
We start with n = 1:



(elimination of lower order terms in inequalities)

X _Hd, x

a | |a

A A
Since deg(wx ® L=') > 0, we apply Clifford’s theorem to L(9):

d?ddeg L = deg L9 > 2h0(L(D) —2 > gPIRY(L) — 2
divide by 0?9 and let d — oc:

degL >2hmo(L), ie., A(L)>2



Set ¢(x) := vol(L + xM) and X := max{t | vol(L + xM) = 0}.

Theorem (Lazarsfeld—Mustata, Boucksom—Favre—Jonsson
'09):

1 is differentiable for x > x and one has:

Y'(x) = nvolyy(L + xM)



Inductive hypothesis —-
Y'(x) = nvolym(L + xM) > n-2(n—1)l¢/(x) = 2nl¢’(x)

Taking ffoo of both sides of the above equation gives:

vol(L) > 2n'h3(L).



Proof of the refined inequalities (when a is either generically
injective or not composed with an involution):

since \(L) = A(L(9)) we may replace X by X(@, for d > 0,
and assume that the map given by |L| is replaced by the
eventual map.

in the first inductive step (n = 2) use refined versions of the
inequality, that hold when |L| is either birational or not
composed with an involution.



