Birational geometry of varieties of maximal Albanese dimension

Rita Pardini

Università di Pisa

Connections for women MSRI, January 28–30, 2019

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

1 Irregular varieties

2 Setup and Clifford-Severi inequalities

3 The eventual map

4 Covering trick and continuous rank for \mathbb{R} -divisors

5 Idea of proof of the inequalities

A complex torus of dimension *q* is a quotient $T := V/\Lambda$, where:

- V is a q-dimensional C-vector space
- $\Lambda \subset V$ is a <u>lattice</u>, namely $\Lambda \cong \mathbb{Z}^{2q}$ and $\langle \Lambda \rangle_{\mathbb{R}} = V$.

The quotient map $p: V \to T$ is the universal cover, so *V* is a complex manifold and $\pi_1(V) = \Lambda$.

T is an abelian variety if there is an embedding $T \hookrightarrow \mathbb{P}^N$.

Riemann's bilinear relations

 $T = V/\Lambda$ is an abelian variety iff there exists a positive definite Hermitian form *H* on *V* such that $\text{Im}H(\Lambda,\Lambda) \subseteq \mathbb{Z}$.

H as above is a polarization. If $q \ge 2$, not every complex torus *T* has a polarization.

A smooth complex projective variety X is irregular if $H^0(X, \Omega^1_X) \neq 0$; $q(X) := h^0(X, \Omega^1_X)$ is the irregularity. Being irregular is a topological property: $\overline{b_1(X)} = 2q(X)$.

If $T = V/\Lambda$ is a complex torus, then for any $\psi \in V^{\vee}$ the 1-form $d\psi$ descends to a global holomorphic form; $V^{\vee} \to H^0(T, \Omega_T^1)$ is an isomorphism, so X is irregular and q(X) := q.

More examples: curves of genus g > 0, complete intersections in abelian varieties, $X \times Y$ with X irregular, varieties that dominate an irregular variety...

In particular, if $f: X \to T = V/\Lambda$ is nonconstant, then X is irregular.

Let $\omega_i = f^* dz_i$, where $z_1, \ldots z_q$ are coordinates on *V*; locally near any $x_0 \in X$ the map *f* lifts to $V \cong \mathbb{C}^q$ as

$$x \mapsto \left(\int_{x_0}^x \omega_1, \ldots, \int_{x_0}^x \omega_q\right) + c$$

for some $c \in V$.

To get a similar global expression, we need to mod out the <u>periods</u>, i.e., the integrals $(\int_{\gamma} \omega_1, \ldots, \int_{\gamma} \omega_q)$ for $\gamma \in H_1(X, \mathbb{Z})$.

Warning: if $\omega_1, \ldots, \omega_k$ are holomorphic 1-forms, in general the periods $(\int_{\gamma} \omega_1, \ldots, \int_{\gamma} \omega_k)$ do **not** form a lattice in \mathbb{C}^k .

Hodge theory \Rightarrow get a lattice if one takes **all** the holomorphic 1-forms:

- set $V := H^0(X, \Omega^1_X)^{\vee}$
- the image Λ ⊂ V of the map H₁(X, Z) → V defined by γ ↦ ∫_γ− is a lattice.

So we have the <u>Albanese torus</u> $Alb(X) := V/\Lambda$ and the <u>Albanese map</u> $a_X : X \to Alb(X), x \mapsto \int_{x_0}^x -,$ where $x_0 \in X$ is a base point.

Alb(X) is actually an **abelian variety** (the polarization is induced by a choice of an ample line bundle on X).

Universal property: given $f: X \to T$ holomorphic map, f factorizes uniquely as $X \xrightarrow{a_X} Alb(X) \to T$.

If f(X) generates T as a group then T is an abelian variety.

The <u>Albanese dimension</u> of X is $albdim(X) := dim(a_X(X))$; X has maximal Albanese dimension (m.A.d) if albdim(X) = dim X =: n.

This is a topological property: $albdim(X) \ge k$ iff $\wedge^{2k} H^1(X, \mathbb{C}) \to H^{2k}(X, \mathbb{C})$ is not the zero map.

Let *L* be a big line bundle, i.e. s.t. $|L^{\otimes m}|$ gives a generically injective map $X \to \mathbb{P}^N$ map for $m \gg 0$. A numerical measure of bigness is the volume

$$\operatorname{vol}(L) := \lim_{m} n! \frac{h^0(X, L^{\otimes m})}{m^n} \in \mathbb{R}_{>0}$$

Note: if *L* is nef, $vol(L) = L^n$.

Let $\omega_X = \mathcal{O}_X(K_X)$ canonical sheaf: X is <u>of general type</u> if ω_X is big. For X of general type we consider two numerical birational invariants:

$$\operatorname{vol}(X) := \operatorname{vol}(\omega_X)$$
 and $\chi(X) := \chi(\omega_X) = \sum_{i=0}^n (-1)^i h^i(X, \omega_X).$

Geographical problem: what are the restrictions on vol(*X*) and $\chi(X)$? and what if *X* is irregular/m.A.d.?

If n = 2, then vol(X), $\chi(X) \in \mathbb{N}_{>0}$ and:

- $vol(X) \le 9\chi(X)$ (Bogomolov–Miyaoka–Yau inequality)
- $vol(X) \ge 2\chi(X) 6$ (Noether inequality)
- $vol(X) \ge 2\chi(X)$ if X is irregular (Bombieri)
- $vol(X) \ge 4\chi(X)$ if X is m.A.d. ("Severi inequality", P. '04)
- If n > 2 and X of m.A.d, then:
 - *χ*(*X*) ≥ 0
 - vol(X) ≥ 2n!χ(X) ("Generalized Severi inequality", Barja '14 and Tong Zhang '14)

(日)

We set $\operatorname{Pic}^{0}(X) := \{\operatorname{topol. trivial l. bundles on } X\}/\cong;$ if $T = V/\Lambda$, $\operatorname{Pic}^{0}(T)$ the <u>dual torus</u>, a complex torus of dimension *q*. In general, the map a_{X}^{*} : $\operatorname{Pic}^{0}(\operatorname{Alb}(X)) \to \operatorname{Pic}^{0}(X)$ is an isomorphism.

Generic vanishing (Green–Lazarsfeld '87): for X m.A.d., $H^i(X, \omega_X \otimes \alpha) = 0$ for i > 0 and $\alpha \in \text{Pic}^0(X)$ general.

So for $\alpha \in \text{Pic}^{0}(X)$ general:

•
$$\chi(X) = \chi(\omega_X) = \chi(\omega_X \otimes \alpha) = h^0(\omega_X \otimes \alpha) \ge 0$$

the generalized Severi inequality can be written vol(ω_X) ≥ 2n! h⁰(ω_X ⊗ α).

(日) (日) (日) (日) (日) (日) (日) (日)

Generalized set-up:

 $a: X \rightarrow A$ a map to an abelian variety such that:

- a is generically finite onto its image
- $\operatorname{Pic}^{0}(A) \to \operatorname{Pic}^{0}(X)$ is injective

We set: $q := \dim A$ and we fix $L \in Pic(X)$.

The <u>continuous rank</u> of *L* (with respect to *a*) is:

$$h^0_a(X,L) := \min\{h^0(X,L\otimes \alpha) \mid \alpha \in \mathsf{Pic}^0(A)\}.$$

(generic vanishing $\Rightarrow h_a^0(\omega_X) = \chi(X)$).

Basic diagram:

Let *d* be an integer and let μ_d : $A \rightarrow A$ be multiplication by *d*;

$$egin{array}{ccc} X^{(d)} & \stackrel{\widetilde{\mu_d}}{\longrightarrow} & X \ a_d & & & \downarrow a \ A & \stackrel{\mu_d}{\longrightarrow} & A \end{array}$$

 $X^{(d)}$ is connected, $\widetilde{\mu_d}$ is a degree d^{2q} étale cover, the map a_d satisfies the same properties as a. Set $L^{(d)} := \widetilde{\mu_d}^* L$; we wish to study $|L^{(d)} \otimes \alpha|$ for $\alpha \in \operatorname{Pic}^0(A)$ general and $d \gg 0$.

Multiplicative property of the continuous rank:

$$h^0_{a_d}(X_d, L^{(d)}) = d^{2q}h^0_a(X, L)$$

If $h_a^0(L) > 0$, we define the slope $\lambda(L) := \frac{\operatorname{vol}(L)}{h_a^0(L)}$. Note: mult. property $\Rightarrow \lambda(L^{(d)}) = \lambda(L)$

Key remark (Barja): if $h_a^0(X, L) > 0$, then $|L^{(d)}|$ gives a generically finite map for $d \gg 0$. $\Rightarrow L^{(d)}$ is big $\Rightarrow L$ is big and $\lambda(L) > 0$.

(日)

A Clifford-Severi inequality is an inequality of the form

 $\lambda(L) \geq C(n),$

where C(n) > 0 is a constant depending on *n*.

Theorem (Barja '14):

- if *L* is nef, then $\lambda(L) \ge n!$ (1st C-S inequality)
- if L is nef and ω_X ⊗ L⁻¹ is pseff, then λ(L) ≥ 2n! (2nd C-S inequality)

The generalized Severi inequality is a consequence of Barja's Theorem for $L = \omega_X$.

(ロ) (同) (三) (三) (三) (○) (○)

In recent joint work with Barja and Stoppino we introduced:

• a new type of asymptotic study for line bundles on m.A.d. varieties ("eventual map")

• the "continuous continuous rank function".

We have used these to drastically simplify the proofs of the known Clifford-Severi inequalities and improve them.

Theorem (Refined C-S inequalities, Barja–P.–Stoppino '16): If $h_a^0(L) > 0$, then:

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

Remarks:

- (1) and (2) were proven by Barja for *L* nef.
- All statements are simplified versions (need a version for pairs *T* ⊆ *X* for the proof).
- If X is a minimal surface and L = ω_X, then (3) gives
 K²_X ≥ 5χ(X); it is conjectured that K²_X ≥ 6χ(X) when a is gen. injective.

(ロ) (同) (三) (三) (三) (○) (○)

• (4) extends a result of Lu-Zuo for n = 2 and $L = \omega_X$

The eventual degree

Assume $h_a^0(L) > 0$.

For $d \in \mathbb{N}$, let $m_L(d)$ be the degree of the map given by $|L^{(d)} \otimes \alpha|$ for $\alpha \in \text{Pic}^0(A)$ general.

The eventual degree of L is:

$$m_L := \min\{m_L(d) \mid d \in \mathbb{N}\}.$$

Remark: $m_L < +\infty$ (by Barja's observation) and $m_L(d) = m_L$ for $d \gg 0$.

The eventual map

Theorem (Eventual factorization):

There exists a generically finite dominant map $\varphi_L \colon X \to Z$ of degree m_L (the eventual map) such that:

(a) the map *a* factorizes as $X \xrightarrow{\varphi_L} Z \to A$

(b) consider the cartesian diagram:

$$\begin{array}{cccc} X^{(d)} & \xrightarrow{\varphi^{(d)}} & Z^{(d)} & \longrightarrow & A \\ & & & \downarrow & & \downarrow & & \downarrow & \mu_{d} \\ & & & \downarrow & & \downarrow & & \downarrow & \mu_{d} \\ & X & \xrightarrow{\varphi_{L}} & Z & \longrightarrow & A \end{array}$$

then $|L^{(d)} \otimes \alpha|$ is birationally equivalent to $\varphi^{(d)}$ for α general and $d \gg 0$.

Remarks:

- the statement is birational: φ_L is unique up to birational isomorphism
- this is a new way of associating a map with a line bundle
- there is a formal analogy between the eventual map and the litaka fibration, in a situation where the litaka fibration is birational and gives no information.
- For $L = \omega_X$ and A = Alb(X), we have the eventual paracanonical map, which is a new geometrical object attached to X.

(ロ) (同) (三) (三) (三) (○) (○)

Corollary:

- If *a* is birational, then φ_L is birational
- If *a* is not composed with an involution, then $m_L \neq 2$. This will be crucial in proving some of the numerical inequalities.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Covering trick I:

(pullbacks from A become divisible)

$$\begin{array}{ccc} X^{(d)} & \xrightarrow{\widetilde{\mu_d}} & X \\ a_d & & \downarrow a \\ A & \xrightarrow{\mu_d} & A \end{array}$$

Fix *H* very ample on *A* and set $M = a^*H$, $M_d := a_d^*H$. The line bundle M_d is big and base point free.

On the other hand, $\mu_d^* H \equiv_{alg} d^2 H$, so $\frac{1}{d^2} M^{(d)} \equiv_{\text{Pic}^0(A)} M_d$ is an integral class.

Let $x \in \mathbb{Q}$ and let $d \in \mathbb{N}$ be such that $d^2x = e \in \mathbb{Z}$. We set:

 $\phi(x) := \frac{1}{d^{2q}} h^0_{a_d} \left(X^{(d)}, (L + xM)^{(d)} \right) = \frac{1}{d^{2q}} h^0_{a_d} (X^{(d)}, L^{(d)} + eM_d)$ By the multiplicative property of the continuous rank, this is well defined.

Properties: For $x_1 < x_2 \in \mathbb{Q}$ we have:

•
$$\phi(x_1) \leq \phi(x_2)$$

• $2\phi(\frac{x_1+x_2}{2}) \le \phi(x_1) + \phi(x_2)$ ("midpoint property")

 $\implies \phi$ extends to a convex continuous non decreasing function $\phi \colon \mathbb{R} \to \mathbb{R}$.

So the function ϕ is right and left differentiable at every point and differentiable outside a countable set.

Proposition: for any $x \in \mathbb{R}$:

$$D^{-}\phi(x) := \lim_{d \to +\infty} \frac{1}{d^{2q-2}} h^{0}_{a_d}(X_{|M_d}, (L+xM)^{(d)}),$$

where $M_d \in |M_d|$ is general and $h_a^0(X_{|M_d}, L + xM)$ is the restricted continuous rank.

Idea of the proofs

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Consider the 2nd Clifford–Severi inequality:

$$\omega_X \otimes L^{-1} \text{ pseff } \implies \text{vol}(L) \ge 2n! h_a^0(X, L)$$

The proof is by induction on *n*. We start with n = 1:

Covering trick, II:

(elimination of lower order terms in inequalities)

Since deg($\omega_X \otimes L^{-1}$) ≥ 0 , we apply Clifford's theorem to $L^{(d)}$:

$$d^{2q} \deg L = \deg L^{(d)} \ge 2h^0(L^{(d)}) - 2 \ge d^{2q}h^0_a(L) - 2$$

divide by d^{2q} and let $d \to \infty$:

$$\deg L \geq 2h_a^0(L), \quad ext{i.e.}, \ \lambda(L) \geq 2$$

Inductive step:

Set $\psi(x) := \operatorname{vol}(L + xM)$ and $\bar{x} := \max\{t \mid \operatorname{vol}(L + xM) = 0\}$.

Theorem (Lazarsfeld–Mustaţă, Boucksom–Favre–Jonsson '09):

 ψ is differentiable for $x > \bar{x}$ and one has:

 $\psi'(x) = n \operatorname{vol}_{X|M}(L + xM)$

Inductive hypothesis \implies

$$\psi'(x) = n \operatorname{vol}_{X|M}(L + xM) \ge n \cdot 2(n-1)! \phi'(x) = 2n! \phi'(x)$$

Taking $\int_{-\infty}^{0}$ of both sides of the above equation gives: vol(*L*) $\geq 2n! h_a^0(L)$.

Proof of the refined inequalities (when *a* is either generically injective or not composed with an involution):

- since λ(L) = λ(L^(d)) we may replace X by X^(d), for d ≫ 0, and assume that the map given by |L| is replaced by the eventual map.
- in the first inductive step (n = 2) use refined versions of the inequality, that hold when |L| is either birational or not composed with an involution.

(ロ) (同) (三) (三) (三) (○) (○)