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STABLE BIRATIONAL INVARIANTS

CLAIRE VOISIN

1. Rationality

Let X be a smooth projective variety over an algebraically closed field k.

Definition 1.1. We say that X is unirational if there exists a dominant rational
map PN

k → X. (If X is unirational, we can take N = n := dimX.)

Definition 1.2. We say X is rational if there exists a birational map Pn
k 99K X.

We say X is stably rational if X ×Pr
k is rational for some r.

Evidently, rational =⇒ stably rational =⇒ unirational.
The Lüroth problem is concerned with the converse: is a unirational variety ra-

tional?
This has a stable version: is a unirational variety stably rational?
Although this is really just a question about the function fields, it turns out to be

essential to have a smooth projective model.
For dimX ≤ 2, in characteristic 0 the answer has been known since 1970: unira-

tional implies rational.
For dimX ≥ 3, the answer is No.

2. Methods of rationality

We will briefly describe the three methods that have been used to address these
questions. The first two don’t address stable rationality, while the third does.

2.1. The method of Griffiths.

Theorem 2.1 (Griffiths). A smooth cubic 3-fold X ↪→ P4
k is not rational, but it is

unirational.

To see the unirationality, start with a line L ⊂ X which is tangent to X. Given
another line through L, there is a 3rd intersection point with X. This gives a map
from the P2-bundle over L to X.

The stable rationality is still not known. The method used here does not apply
to all dimensions.
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2.2. The method of Iskovskih-Manin.

Theorem 2.2 (Iskovskih-Manin). A smooth quartic 3-fold in P4
k is not rational in

characteristic 0.

Although the theorem does not address stable rationality, the criterion used here
applies in all dimensions, and was generalized to degree n hypersurfaces in Pn.
(They study the birational automorphism group.) However, the method has not
been applied to study stable rationality.

2.3. The method of Artin-Mumford. This was developed by Artin-Mumford.
The idea is to construct stable birational invariants.

3. Stable birational invariants

Definition 3.1. We say X and Y are stably birational if there is a birational map
X ×Pr 99K Y ×Ps for some r, s.

This generates an equivalence relation. A stable birational invariant is an invariant
on the stable birational equivalence classes.

Example 3.2. For smooth projective X, consider H0(Ω⊗`
X ) for all ` ≥ 0. This is a

stable birational invariant of X.
Why? The point is that ΩX×Pr ∼= ΩX ⊕ ΩPr , hence

H0(Ω⊗`
X×Pr) =

⊕
`1+`2=`

H0(Ω⊗`1
X )⊗H0(Ω⊗`2

Pr ).

Then one uses that Pr has no holomorphic 1-forms.
To finish one has to show the invariance under birational equivalence. Consider

the restriction H0(Ω⊗`
X ) → H0(Ω⊗`

U ) to an open subset U ⊂ X. This is injective,
and it is an isomorphism if the codimension of X − U is at least 2, by normality.
Now we are going to use that X and Y are smooth and projective. This implies that
any birational f : X → Y is defined on an open subset U ⊂ X with complement of
codimension at least 2. Hence

H0(Ω⊗`
Y ) ↪→ H0(Ω⊗`

U )
∼←− H0(Ω⊗`

X ).

The symmetric argument gives an injection H0(Ω⊗`
X ) ↪→ H0(Ω⊗`

Y ), and one easily
checks that these are inverses of each other.

In characteristic 0, a unirational variety X has H0(Ω⊗`
X ) = 0 for all ` > 0 since

the pullback of forms is injective. But in characteristic p, there are counter-examples
due to Kollár-Totaro.

4. The Artin-Mumford invariant

Let X/C. We consider the Betti cohomology H i
B(X(C), A).

Lemma 4.1. The “topological Brauer group” H3
B(X;Z)tors is a stable birational in-

variant of smooth, projective X.
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Proof. First we compare X with X ×Pr. By the Kunneth theorem,

H3
B(X ×k P

r;Z) ∼= H3(X;Z)⊕H1(X;Z)

and H1
B(X;Z) has no torsion.

Then we examine birational equivalence. By resolution of singularities, we have
a weak factorization of the birational map from X to Y by blowups. Then we just
have to show invariance under blowups.

Let Z ⊂ X and consider the blowup X̃Z → X. We know that

H3
B(X̃Z ;Z) ∼= H3

B(X;Z)⊕H1
B(Z;Z)

and H1
B(Z;Z) is torsion-free, so again the torsion in H3(−;Z) is preserved. �

Example 4.2. The quartic double solid is a double cover X → P3 ramified over a
quartic surface. This embeds into L, the total space ofO(2), i.e. Spec

⊕
dOP3(−2d).

Let y ∈ H0(L, π∗O(2)).
Artin-Mumford consider y2 = f , the defining equation of X, call it Xf . In

the Artin-Mumford example, one chooses a specific f0 so this has 10 nodes in
special position. Let X̃f0 be the desingularization. Artin-Mumford showed that
H3

B(X̃f0 ;Z)tors 6= 0. Later we will deform this example to a general quartic double
solid Xf , for which the Artin-Mumford example vanishes.

5. Another invariant

Let X/C. Define Z4(X) to be(
H4

B(X;Z)

H4
B(X;Z)alg

)
tors

where H4
B(X;Z)alg is the subgroup generated by classes of algebraic subvarieties of

codimension 2. It is contained in 4-dimensional integral Hodge classes. It is known
that (

Hdg4(X;Z)

H4
B(X;Z)alg

)
tors

∼=
(

H4
B(X;Z)

H4
B(X;Z)alg

)
tors

According to the Hodge conjecture, Hdg4(X;Z)
H4

B(X;Z)alg
is already torsion. One knows this

for unirational varieties.

Lemma 5.1. The group
Hdg4(X;Z)

H4
B(X;Z)alg

is a stable birational invariant.

Colliot-Thélène has exhibited 6-folds X which are unirational, with Z4(X) 6= 0.
Schreieder exhibited 4-folds with this property. Voison proved that Z4(X) is trivial
for 3-folds X if X is unirational or KX is trivial.

Proof. The point is that when one considers Hdg4(X × Pr;Z), one finds Hodge
classes of X and Hodge classes of degree 2 in X, but the latter are all algebraic by
Lefschetz (1,1). �
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6. Unramified cohomology

There is a continuous map

f : Xan → XZar.

This induces a Leray spectral sequence, which is called the Bloch-Ogus spectral
sequence. Define Hi(A) := Rif∗A. This is a sheaf on XZar, associated to the
presheaf

U 7→ H i
B(U,A).

The spectral sequence reads

Epq
2 = Hp(XZar,Hq(A)) =⇒ Hp+q(Xan;A).

Definition 6.1. We define the unramified cohomology

H i
nr(X;A) := H0(XZar;Hi(A)).

Theorem 6.2. The unramified cohomology groups are a stable birational invariant.
If A = Z, then H i

nr(X;Z) = 0 if i > 0 and X is unirational.
For X unirational, Z4(X) ∼= H3

nr(X;Q/Z) and H3
B(X;Z)tors ∼= H2

nr(X;Q/Z).

This is highly non-trivial. It uses the Bloch-Kato Conjecture (proved by Voevod-
sky), which implies that Hi(Z) are torsion-free.


