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THH AND TC: FROM CLASSICAL TO MODERN - III

KATHRYN HESS

1. Cyclotomic spectra

Definition 1.1. We define the category of orthogonal cyclotomic spectra CycSpO:
• Objects are pairs (X, (ϕn)n≥0) where

– X ∈ TSpO,
– ϕn : ΦCn(X)

∼−→ X ∈ TSpO where the equivalence is in the sense of
F-equivalence. (Note that ΦCn(X) is still a T-spectrum via the identi-
fication T/Cn

∼−→ T.)
– We demand that the diagram commutes:

ΦCnΦCm(X) ΦCnm(X)

ΦCn(X) X

∼

ϕnm

ϕn

Remark 1.2. These structures should be thought of as analogous to the
isomorphism (LX)Cn ∼= LX.

• A map f ∈ CycSpO((X, (ϕn)n≥0), (Y, (ψn)n≥0)) is an F-equivalence if it is
on underlying T-spectra.

We can now define topological cyclic homology for any orthogonal spectrum.

Definition 1.3. Given (X, (ϕn)n≥0) ∈ CycSpO, we define its topological cyclic ho-
mology TC(X) as in the first lecture, using

F : XCpn → XCpn−1

R : XCpn → (ΦCpX)Cpn−1
ϕ
C
pn−1

p−−−−−→ XCpn−1

1.1. Cyclotomic structure on THH. Let A ∈ Alg(SpO). We need a replacement
for A ∧ . . . ∧ A to get homotopy invariance and to get the cyclotomic structure.
(Recall we said before this would only behave well if A was “cofibrant”.)

[Bökstedt] gave a construction B(A, . . . , A) such that there is a natural equivalence

A ∧ . . . ∧A ∼−→ B(A, . . . , A)

which preserves equivalences of SpO, and plays nicely with geometric fixed points.
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2 KATHRYN HESS

Thanks to this, given A ∈ Alg(SpO), Bökstedt’s THH∗(A) has

THHn(A) := B(A, . . . , A)n+1.

Then we define
|THH(A)| := |THH∗(A)|.

Properties:
(1) There is a natural cyclotomic structure on THH(A).
(2) There is a natural trace map tr : K(A)→ THH(A).
(3) (Bökstedt-Waldhausen) THH(Σ∞+ (ΩX)) ∼= Σ∞+ (LX).
(4) THH generalizes to SpO − Cat and THH(PerfA) ∼= THH(A).
(5) Morita invariance and localization generalize.

2. Cyclotomic spectra, re-imagined

We are going to move from the world of model categories and ∞-categories.
General principle [Lurie]: there is a functor (“homotopy coherent nerve”)N : sCat→

sSet such that if C(x, y) is a Kan complex for all x, y ∈ C, thenNC is a quasi-category.

Remark 2.1. Kan complexes are the fibrant objects in the model category structure
on simplicial sets.

If M is a simplicial model category, then NMcf is a quasi-category, which is
referred to as the “underlying ∞-category ofM”. (HereMcf is the subcategory of
cofibrant and fibrant objects.)

Notation: for any simplicial model categoryM, we writeNM for this∞-category.
A result of Hinich, generalized by Nikolas-Scholze, asserts that if M has a sym-

metric monoidal structure then NM inherits a symmetric monoidal structure. More
precisely, if (M,⊗, I) is a symmetric monoidal model category then NM is a sym-
metric monoidal ∞-category.

2.1. Dictionary.
Model Category ∞-category Cp∞Sp = lim←−n

CpnSp

SpO Sp
GSpO GSp
TSpO

F TSpF
Induced functors:
• We have a “forgetful functor” U : GSp → SpBG (since the forgetful functor

GSpO → SpO preserves equivalences).
• ΦH , (−)H : GSp → Sp for all H < G preserve equivalences, and there is a
natural transformation

(−)H → ΦH(−)

which corresponds to “the inclusion of the trivial representation in the regular
representation”.
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• For all H < G, we can consider the composite

GSp
U−→ SpBG limBG−−−−→ Sp

is the “homotopy fixed points” functor (−)hH . Similarly there is a homotopy
orbit functor (−)hH . There is a natural transformation (−)H → (−)hH .

What about cyclotomic spectra? There are two possible answers:

2.2. First approach. Fix a prime p.

CycSpgen
p = Eq

(
Cp∞Sp

Id
⇒

ΦCp

Cp∞Sp

)
.

(Here we use that Cp∞/Cp
∼= Cp∞ .) This is the ∞-category of genuine p-cyclotomic

spectra.
What does this look like? The objects are (X,ΦCp(X)

∼−→ X).
For the integral case, observe that inverting F-equivalences gives an action of N≥0

on TSpF . We then define CycSpgen = (TSpF )hN>0 . This is the category of genuine
cyclotomic spectra.

The objects are (X, (ϕn : ΦCnX
∼−→ X)n>0) with the ϕn being T-equivariant, plus

a homotopy-coherent commutativity condition. (This is one reason we’ll look at a
second model for cyclotomic spectra.)

Theorem 2.2 (Nikolaus-Scholze). CycSpgen “is” the underlying∞-category of CycSpO.
(There is a similar result for a fixed p.)

2.3. Nikolaus-Scholze approach. We first need to generalize the classical Tate
construction.

Definition 2.3. Let G be a finite group. Let C be a stable ∞-category admitting
all limits and colimits indexed by BG. It turns out that there is a norm map

NmG : (−)hG → (−)hG.

The Tate construction is the functor (−)tG : CBG → C takes X to the cofiber of
NmG : XhG → XhG.

Example 2.4. Let C = Sp. For a G-module M , let HM be the corresponding
Eilenberg-MacLane spectrum. Then

πi(M
tG) ∼= Ĥ−i(G;M)

(the classical Tate construction).

Definition 2.5. The ∞-category of (Nikolaus-Scholze) p-cyclotomic spectra is

CycSpp (SpBCp∞ )∆1

SpBCp∞ SpBCp∞ × SpBCp∞

ev0,ev1

(Id,(−)tCp )
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So the objects can be thought of as pairs (X ∈ SpBCp∞ , ϕp : X → XtCp) with ϕp

being Cp∞-equivariant.

What about the integral case? We define CycSp by the limit of the diagram:

CycSp
(∏

p prime SpBT
)∆1

SpBT
(∏

p prime SpBT
)2

ev0,ev1

(∆,((−)tCp )p)

The objects are (X ∈ SpBT, (ϕp : X → XtCp)p) where the ϕp are T-equivariant.

Example 2.6. We make the sphere spectrum into a cyclotomic spectrum. We have
Striv ∈ SpBT. Since the action is trivial, there is a map S→ ShCp and the composite
map to StCp is defined to be ϕp. One has to show that this composite is actually
T-equivariant.

Theorem 2.7 (Nikolaus-Scholze). There are equivalences of ∞-categories

CycSpgen ∼−→ CycSp

and
CycSpgen

p
∼−→ CycSpp

when restricted to bounded below spectra.

3. TC for Nikolaus-Scholze cyclotomic spectra

Remark 3.1. Let C be a stable ∞-category, so for all x, y ∈ Ob(C) there is a
mapping space MapC(x, y) ∈ Sp.

Definition 3.2. For X ∈ CycSp, we define TC(X) to be MapCycSp(Striv, X). (Sim-
ilarly for p.)

Theorem 3.3 (Nikolaus-Scholze). If X ∈ CycSpgen is bounded below, then

TCgen(X) ∼= TC(X)

and similarly for p.

Theorem 3.4. Let A ∈ AlgE1
(Sp), intuitively an “associative spectrum”, then there

exists a natural cyclotomic structure on THH(A).


