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DAG I: THE COTANGENT COMPLEX AND DERIVED DE
RHAM COHOMOLOGY

BENJAMIN ANTIEAU

1. Motivation

We are going to give an evolutionary diagram.
• In classical algebraic geometry, one considers “algebraic schemes” or “alge-
braic spaces” such as Pn.
• Then one considers “algebraic stacks” such as the Picard stack PicX/k of a
curve X/k. This is an “Artin stack”.

To make the next step, we need to adopt a new point of view. We can view
these objects as sheaves of sets (by the functor of points). We then view sets as
“0-truncated spaces” S≤0, i.e. spaces with non-zero homotopy groups πi with i ≤ 0..

More generally, we can consider groupoids, which are “1-truncated spaces” S≤1.
If we continue, we enter the realm of “higher stacks”, e.g. K(Gm, n). The isotopy

of this space is K(Gm, n− 1).

Example 1.1. We can reformulate PicX/k as the mapping stack fromX toK(Gm, 1),
which also goes by the name BGm = [pt /Gm]. We can then view K(Gm, 2) =
[pt /BGm].

Example 1.2. What does it mean to give a map from a scheme to K(Gm, n)? By
definition Map(X,K(Gm, n)) is a topological space, with

πi Map(X,K(Gm, n)) ∼=

{
Hn−i

ét (X,Gm) 0 ≤ i ≤ n,
0 otherwise.

We have now expanded our world of “geometric objects” to include sheaves of
groupoids, or sheaves of n-truncated spaces. The fundamental idea of derived alge-
braic geometry is to allow the sheaf of functions itself to be a sheaf of topological
spaces. This leads to the notion of “derived schemes”.

Example 1.3. An example of an affine derived scheme is Spec (k⊗L
k[x] k), where the

maps k[x]→ k send x 7→ 0.

2. Simplicial commutative rings

We are now going to introduce a model for what should be the “commutative rings
of derived algebraic geometry”.
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Consider the derived category D(Z)≥0, where we are considering only the com-
plexes C∗ such that Hi(C∗) = 0 for i < 0 (this condition is also called “connective”).
This can be enhanced to a symmetric monoidal category using the derived tensor
product ⊗L.

What should we take as the commutative algebras in (D(Z)≥0,⊗L)? There are
three different answers:

• E∞-ring spectra,
• simplicial commutative rings,
• Over Q, one can work with Q-CDGAs.

These are not equivalent in general, although they are equivalent rationally. We will
work with the second.

We introduce the simplex category ∆, which is the category of non-empty finite
ordered sets, with morphisms being order-preserving maps of sets.

Example 2.1. We write [0] for {0}, [1] for {0, 1}, and [2] for {0, 1, 2}. Evidently we
have two maps [0]→ [1] and one map [1]→ 0, etc.

Definition 2.2. Let C be a category. We let sC = Fun(∆op, C) be the category of
simplicial objects in C.

Example 2.3. There is an “equivalence” between sSets and the category of topolog-
ical spaces, at the level of homotopy categories. This means we specify a notion of
“weak equivalence” on each side (in topological spaces it is the usual notion, wherein
maps inducing isomorphisms of π∗ are weak equivalences), and the “localization” of
each side with respect to these are equivalent.

Let ∆n be the pre-sheaf Hom∆(−, [n]) i.e. the Yoneda embedding of [n]. Let ∆n
top

be the usual n-simplex. This induces a functor from sSets to topological spaces,
called geometric realization, giving by presenting a simpicial set as a colimit of the
representable objects ∆n and taking that colimit in Top. We then pull back the
notion of weak equivalence along this functor.

We can view ∆∗top as a cosimplicial object in Top. Hence HomTop(∆∗top, X) is a
simplicial object in Top. This is the right adjoint to geometric realization.

Let’s make a connection to something familiar. Given a topological space X,
we make a simplicial set Sing(X) := HomTop(∆∗top, X). Then we form a simplicial
abelian group Z[Sing(X)]. We can extract from this a chain complex C∗(Z[Sing(X)]),
and by definition

Hi(C∗(Z[Sing(X)])) ∼= Hsing
i (X;Z).

Example 2.4. TheDold-Kan correspondence furnishes an equivalence sAb ∼= D(Z)≥0.
Given a simplicial abelian group

M0 ⇔M1 . . .

we make a chain complex with differentials
∑

(−1)idi:

M0
d0−d1←−−−−M1 ← . . .
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Example 2.5. The category of simplicial commutative rings is

sCAlgk = Fun(∆op,CAlgk).

There is a notion of weak equivalence, which is weak equivalence of the underlying
simplicial sets. But moreover, there is a model category structure, which specifies
weak equivalences but also specifies a “right way” to perform certain derived opera-
tions. For this reason, this is sometimes called a “non-abelian derived category”.

For R ∈ sCAlg, π∗R has the structure of a graded commutative ring. This means
that

xy = (−1)|x||y|yx

and x2 = 0 if |x| is odd.

There is an adjunction Sets → CAlgk sending S 7→ k[S]. Given R ∈ CAlgk, we
can make a simplicial k-algebra

S• : . . . k[k[R]] ⇒ k[R]

which is the analogue of a “projective resolution” for commuative rings. Let CAlgpoly
k

be the category of finitely generated polynomial k-algebras. There is a fully faithful
embedding to Ind(CAlgpoly

k ), which is the category obtained by formally adjoining
colimits, and this includes into sCAlgk.

Given a functor F : CAlgpoly
k → C, there is a way to extend to LF : sCAlgk → C.

The recipe is as follows. Given R ∈ CAlgk, make S∗
∼−→ R as above. Then we have

F (S∗) ∈ sC, and define

LF (R) = colim−−−→
∆

F (S∗) =: |F (S∗)|.

3. The cotangent complex

We give several constructions.
(a) Given k → R, we have explained that we can make a simplicial a “good” simplicial

“resolution” S•
∼−→ R. Then we define

LR/k := Ω1
S•/k
⊗S• R ∈ sModR

∼= D(R)≥0.

(b) We have a functor Ω1
−/k : CAlgpoly

k → D(k)≥0. We can then extend this to a
LΩ1
−/k on sCAlgk on as discussed previously. However, there are several defi-

ciencies, e.g. we don’t see the R-module structure.
(c) We’ll correct the previous issues by phrasing a universal property. Let k → R→

S and M be an S-module in D(S)≥0. We will define LR/k to have the universal
property that (the topological space)

MapR(LR/k,M) ∼= MapsCAlgk/S
(R,S ⊕M).

Here MapsCAlgk/S
is the slice category of simplicial commutative rings equipped

with a map to S, and S ⊕M is the square-zero extension of S by M . Note that
this makes sense for M ∈ D(S)≥0!
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Exercise 3.1. Show that π0LR/k
∼= Ω1

R/k.

Exercise 3.2. Show that S ⊗L
R LR/k → LS/k → LS/R is an exact triangle.

Example 3.3. Show that T ⊗k LR/k
∼= LR⊗L

k T/T

k R

T R⊗L
k T

Exercise 3.4. Let R be a perfect algebra over Fp. Using that the Frobenius mor-
phism ϕ : R→ R, which sends x 7→ xp, is an isomorphism, show that LR/Fp

∼= 0.

4. Derived de Rham cohomology

There is a functor
dRR/k : CAlgpoly

k → D(k)

sending R to the chain complex (R 7→ Ω1
R/k → Ω2

R/k → . . .). We can then “derive”
this functor to get a “derived de Rham cohomology” functor

LdRR/k : sCAlgpoly
k → D(k).

There is something to be cautious about. If k is a Q-algebra and R ∈ CAlgpoly
k ,

then dRR/k
∼= k. This implies that LdRS/k

∼= k for any s ∈ sCAlgk, and this isn’t
very interesting.

A fix was given by Bhargav Bhatt, which gives the answer you “want”. We also
have a Hodge filtration F ∗H on dRR/k, with

griH(dRR/k) ∼= Ωi
R/k[−i].

We then try to take the derived functor remembering the filtration. We then get a
filtration F ∗HLdR−/k such that

griH LdR−/k ∼= L(∧iL−/k[−i]).
This filtration isn’t complete, so we define

L̂dR−/k := lim
i

LdR−/k

F i
H

Theorem 4.1 (Bhatt, Grothendieck, Hartshorne). Let X/C be finite type. Then

RΓ(X, L̂dROX/k) ∼= RΓsing(X(C);C).


