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DAG II: MODULI OF OBJECTS IN DERIVED CATEGORIES

BEN ANTIEAU

1. Simplicial commutative rings

Let k be a simplicial commutative ring. We will consider sCAlgk.
For R,S ∈ sCAlgk the object MapsCAlgk

(R,S) is a space.

Example 1.1. (i) MapsCAlgk
(k, S) is contractible.

(ii) MapsCAlgk
(k[t], S) is the underlying simplicial set S.

We have defined a cotangent complex LR/k.

Definition 1.2. We say R ∈ sCAlgk is discrete if πi(R) = 0 for i > 0.

We have an adjunction

π0 : sCAlgk ↔ sCAlgdiscrete
k

∼= CAlgπ0(k).

Definition 1.3. We say k → R is locally finite presented, and write R ∈ sCAlgωk ⊂
sCAlgk, if

MapsCAlgk
(R,−) : sCAlgk → S

commutes with filtered colimits.

Definition 1.4. We say that k → R is formally étale if LR/k ∼= 0. We say that
k → R is étale if it is formally étale and locally of finite presentation.

Proposition 1.5. The following are equivalent:
(a) k → R is étale.
(b) π0(k)→ π0(R) is étale and πi(k)⊗π0(k) π0(R)

∼−→ πi(R) is an isomorphism (the
map π0(k)→ π0(R) is flat, so the tensor product does not need to be derived).

Theorem 1.6. There is an equivalence

sCAlgét
k
∼= CAlgét

π0(k).

Remark 1.7. This implies that the small étale site of k agrees with the small étale
set of π0(k). Recall the topological invariance of the small étale site: for R an
ordinary commutative algebra and I ⊂ R a nilpotent ideal, CAlgét

R
∼−→ CAlgét

R/I . We
can think of this theorem as telling us that the higher homotopy should be regarded
as nilpotents.
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2 BEN ANTIEAU

Example 1.8. We can view k → π0(k) as a pro-nilpotent thickening. This map
factors through

k → τ≤n(k)→ π0(k)

where

πi(τ≤nk) ∼=

{
πi(k) 0 ≤ i ≤ n
0 else

and k ∼= lim←−n τ≤nk.

2. Derived affine schemes

We will define dAffk := sCAlgk, with the equivalence denoted Spec R↔ R.

Definition 2.1. We say that a family of étale morphisms {R→ Si} is an étale cover
if {π0(R)→ π0(Si)} is an étale cover.

We define a subcategory Shvét(dAffk) ⊂ PShv(dAffk) ∼= Fun(sCAlgk,S) as fol-
lows. Given an étale cover R→ S, we can form the Amitsur complex

S ⇒ S ⊗R S . . .
a cosimplicial object. The “sheaf condition” is that

F(R)
∼−→ lim

∆
F(S⊗∗+1).

As part of the definition of sheaf, we also demand that F preserves finite products.
The Yoneda embedding gives a fully faithful functor

dAffk → Shvét(dAffk).

Giving a simplicial commutative ring R, we can view D(R) ∼= ModR(D(Z)).

Definition 2.2. (i) P is perfect iff it is compact, i.e. P ∈ D(R)ω.
(ii) P has Tor-amplitude in [a, b] if P ⊗R π0(R) has Tor-amplitude in [a, b], i.e.

Hi(P ⊗LR π0(R)⊗Lπ0(R) M) = 0 for all i /∈ [a, b].

Definition 2.3. We say R→ S is smooth if it is locally finitely presented and LS/R
has Tor-amplitude in [0, 0].

3. Deried stacks

We say X i−→ Y in Shvét(dAffk) is 0-geometric if for any Spec R→ Y , the fibered
product is a disjoint union of affine derived schemes:∐

i∈I Spec Si ∼= P Spec R

X Y

A 0-geometric morphism is
• lfp if the Si are lfp over R,
• smooth if the Si are smooth over R.
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Definition 3.1. X → Y is n-geometric if for all Spec R → Y , the fibered product
admits a smooth surjective (n−1)-geometric map from

∐
Spec Si. (Surjective means

that points lift étale-locally.)∐
i∈I Spec Si

P Spec R

X Y

Example 3.2. We have GL1 = Spec k[t±1]. Hence

GL1(R) = MapsCAlgk
(k[t±1], R)

and

πi(GL1(R)) ∼=

{
π0R

× i = 0

πi(R) i > 1

In particular this is not valued in groupoids!
Clearly R 7→ GL1(R) is 0-geometric (it is representable).

Example 3.3. The sheaf Gm(R) := π0(R×) is not n-geometric for any n.

Example 3.4. The classifying (derived) stack of GL1 is [pt /GL1]. For Spec k →
BGL1, the fibered product is

GL1 Spec k

Spec k BGL1

So BGL1 is 1-geometric.

Example 3.5. Next B2 GL1 := [pt /BGL1] is the classifying stack of BGL1. (It
can be thought of as the sheafification of R 7→ B(BGL1(R)).) This has the property
that

∗

BGL1 Spec k

Spec k B2 GL1

This is 2-geometric.

Definition 3.6. A geometric defined stack M is one of the form

M = lim−→
N

Mi
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where eachMi is n-geometric for some n, andMi →Mj is a monomorphism, meaning
Mi(R) ↪→Mj(R) is an inclusion of connected components.


