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Theorem Let X → S be a flat, projective morphisms with
stable fibers, S reduced. Equivalent:

1 The volume of the fibers s 7→
(
K n

Xs

)
is locally constant.

2 The plurigenera s 7→ h0
(
Xs , ω

[m]
Xs

)
are locally constant.

3 ω
[m]
X/S is flat and commutes with base change ∀m.



(3) ⇒ (2)

(3): ω
[m]
X/S is flat and commutes with base change ∀m.

(3’) the ω
[m]
Xs

form a flat family,

(3”) χ
(
Xs , ω

[m]
Xs

)
is locally constant.

m ≥ 2: we expect that H i
(
Xs , ω

[m]
Xs

)
= 0 for i > 0.

Note: K-V not enough need Ambro-Fujino vanishing

m = 1: we expect H i
(
Xs , ωXs

)
= Hn−i(Xs ,OXs

)
and

K-Kovács: Xs Du Bois, so Hn−i(Xs ,OXs

)
locally constant.

(Duality fails since Xs need not be CM, but ok.)



Typical example (with divisors)

X = (xy − uv = 0), u − v : X → C1
t ,

D := (x = u = 0) + (y = v = 0).

– t 6= 0: Xt smooth, Dt Cartier and (D2
t ) = 0.

– t = 0: X0 cone , D0 Cartier and (D2
0 ) = 2.

ideal of D is (xy , xv , uy , uv)→ (xv , uy , uv).
Central fiber: (xu, uy , u2) ⊂ (u), embedded point at origin.



Typical situation (with sheaves)

F reflexive sheaf on X , locally free in
codimension 1 on all fibers. We get

r : F � F |Xs ↪→
(
F |Xs

)∗∗
.

Corollary:
• s 7→ H0

(
Xs ,
(
F |Xs

)∗∗)
is upper semicontinuous

• If the
(
F |Xs

)∗∗
are globally generated then

locally constant ⇔ F |Xs is reflexive.



(2) ⇒ (3)

(2): s 7→ h0
(
Xs , ω

[m]
Xs

)
are locally constant.

For m� 1 the ω
[m]
Xs

are globally generated, so

ω
[m]
X/S is flat and commutes with base change for m� 1.

If ω
[M]
X/S is locally free then

ω
[m+M]
X/S

∼= ω
[m]
X/S ⊗ ω

[M]
X/S

so ω
[m]
X/S is flat and commutes with base change ∀m.



(2) ⇒ (1)

(2): s 7→ h0
(
Xs , ω

[m]
Xs

)
are locally constant.

The
(
K n

Xs

)
are the leading terms, so

s 7→
(
K n

Xs

)
are also locally constant.



(1) ⇒ (2) slide 1

Theorem Let X → S be a flat, projective morphisms with
S2 fibers. L reflexive rank 1 sheaf, locally free on
codimension 1 on each fiber. Assume that each (Ls)

∗∗ is
locally free and ample. Then

1 s 7→ volume(Ls)
∗∗ is upper semicontinuous, and

2 locally constant iff L is locally free.

Apply this to ω
[M]
X/S such that every ω

[M]
Xs

is locally free.
Need extra work for the other m.



Example

Y → C family of degree 4 surfaces,
Y0 ⊃ L line, ρ(Yt) = 1.

Contract L ⊂ Y to get π : Y → X and X → C.
L is the image of 2H on X .

• Lt is ample and (L2t ) = 16.
• L0 = π0(2H0 + L) is ample and (L20) = 18.
• X → C is NOT projective.



(1) ⇒ (2) slide 2

n = 2 case: here cokernel of L→ L∗∗0 is 0 dimensional, so

χ
(
X0, (L

∗∗
0 )m

)
≥ χ

(
Xg , (L

∗∗
g )m

)
= χ

(
Xg , L

m
g

)
.

Riemann-Roch:

1
2
(L∗∗0 ·L∗∗0 )m2+b0m+χ(X0) ≥ 1

2
(L∗∗g ·L∗∗g )m2+bgm+χ(Xg ).

If (L∗∗0 · L∗∗0 ) = (Lg · Lg ) then

b0m ≥ bgm ∀m.

So b0 = bg .



(1) ⇒ (2) slide 3

n ≥ 3 induction (nontrivial) reduces to special case:
L is locally free except at isolated points.

Local Grothendieck-Lefschetz: x ∈ X0 ⊂ X then

Pic(X \ {x}) ↪→ Pic(X0 \ {x})

if depthx X0 ≥ 3.

Problem: we have only depthx X0 ≥ 2.

Conjecture. Still ok if depthx X0 ≥ 2 and dimX0 ≥ 3.

– slc case (K)
– normal case (Bhatt - de Jong)
– general case (K)



Aside: Fulger - K - Lehmann

X normal, proper, D big R divisor, E effective R divisor
Equivalent

• H0
(
X ,OXxm(D − E )y

)
= H0

(
X ,OXxmDy

)
∀m ≥ 1.

• volume(D − E ) = volume(D).



Main existence theorem

Theorem
Fix positive n, d. There is a projective coarse moduli space
M̄n,d parametrizing stable varieties X of dimension n such
that (K n

X ) = d.

Main issues:

• existence of 1-parameter limits, irreducible case;

• existence of 1-parameter limits, reducible case;

• boundedness

• moduli of stable pairs



Limits, irreducible case

Original KSB approach, needs MMP
Hacon-McKernan-Xu



Limits, reducible case

What are the limits when the general fiber is reducible?

For curves: normalize, construct limits and then
glue together.

Problem: gluing is very hard in higher dimensions.

Example: Glue 2 copies of
(
P2, (xyz = 0)

)
.

gluing data: λx , λy , λz ∈ C∗.
When is it projective?

Answer: iff λxλyλz is a root of unity.



Properness, boundedness I

Two possible problems: in a limit we get worse and worse
– sigularities (which mKS is Cartier?)
– reducible varieties (many components?)

Curve case: C = ∪i(Ci ,Pi) then

degKC =
∑

i

(
degKCi

+ #Pi

)
So at most 2g(C )− 2 irreducible components.

Surface case: S = ∪iSi then

K 2
S =

∑
i

(
KSi + Di

)2
.

Problem: The
(
KSi + Di

)2
are only rational.



Properness, boundedness II

Example:
(
P2(1, 2, 3),C ∈ |O(7)|

)
then (KS + C )2 = 1/6.

Example (Alexeev–Liu) (K 2
S ) = 1

48983
.

Proposition. For surface pairs (S ,C 6= 0) we have

(KS + C )2 ≥ 1

1764
.

Theorem (Alexeev, Hacon–McKernan–Xu) In any dimension{
(KX + D)n

}
⊂ Q

satisfies the descending chain condition.

Effective bounds on surface singularities (Rana, Urzúa)



Stable pairs

Objects: (X ,∆) where
• X is seminormal, proper
• ∆ =

∑
diDi effective and Di 6⊂ SingX

(Mumford divisor)
•KX + ∆ Q-Cartier

g : X ′ → X log resolution then write

KX ′ + ∆′ +
∑

aiEi ∼ g ∗
(
KX + ∆)

• all ai ≤ 1



Stable families

Definition I. f : (X ,∆)→ C = smooth curve is stable iff
• KX/C + ∆ is Q-Cartier and
• all fibers stable.

Definition II. f : (X ,∆)→ S = reduced is stable iff
• pull-back to smooth curves is stable.

Definition III. f : (X ,∆)→ S = arbitrary is stable iff
• ????



Coefficients > 1
2
, slide 1

Theorem. f : (X ,
∑

diDi)→ C = smooth curve stable and
dj >

1
2

then Dj → C is flat with reduced fibers.

Write dD = djDj and
∑

diDi = dD + ∆.

Easy case: n = 1. Limit case: C2
xy → C1

x , D = (y 2 = x),

Old case: D Q-Cartier. We almost know that X is CM
(Elkik, Alexeev, Fujino, K.)

So Xc ∩ D is unmixed. Generically reduced (easy case),
so reduced



Coefficients > 1
2
, slide 2

General case: Equivalent form Xc ∪ D is seminormal.

Make D Q-Cartier:
get g : (X ′,X ′0 + dD ′ + ∆′)→ (X ,X0 + D + ∆)

such that −D ′ is g -nef.

0→ OX ′(−X ′0 − D ′)→ OX ′ → OX ′
0+D′ → 0

g∗OX ′ = OX → g∗OX ′
0+D′ → R1g∗OX ′(−X ′0 − D ′).

Note that

−X ′0 − D ′ ∼ KX ′ + ∆′ + (1− d)(−D ′).

G-R should give that R1g∗OX ′(−X ′0 − D ′) is zero.
Not good enough.



Coefficients > 1
2
, slide 3

Ambro-Fujino implies:
R1g∗OX ′(−X ′0 − D ′) has no associated primes

contained in Supp(X0 + D).
So OX → OX0+D → g∗OX ′

0+D′ is onto so
OX0+D = g∗OX ′

0+D′ .

Lemma: g : Y ′ → Y proper, birational, g∗OY ′ = OY .
Then Y ′ seminormal ⇒ Y seminormal.


