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BIRATIONAL ALGEBRAIC GEOMETRY IN POSITIVE
CHARACTERISTIC

KARL SCHWEDE

1. What goes wrong?

At least 3 things go “wrong” in characteristic p algebraic geometry:
(1) Resolution of singularities. In characteristic p, we don’t know resolution of

singularities for dimension ≥ 4.
(2) Bertini theorems (general elements of a basepoint free linear system of a

nonsingular variety may be singular).
(3) Kodaira-type vanishing. (More specifically, Kawamata-Viehweg.)

I’m not going to say anything about getting around the first two issues, but I’ll
explain methods for getting around the third one.

2. Kodaira vanishing

Let X be a smooth projective variety over C. Let L be an ample line bundle on
X, and ωX = ∧dimXΩ1

X/C.

Theorem 2.1 (Kodaira vanishing). H i(X,ωX ⊗L ) = 0 for i > 0.

This fails in characteristic p > 0. To motivate the replacement, we want to show an
argument that uses resolution of singularities to weaken the smoothness hypotheses.

Definition 2.2. Let X be a variety over C. We say that X has rational singularities
if

(1) For any resolution of singularities π : Y → X, we have π∗ωY
∼−→ ωX , where

ωX is the canonical bundle in the classical sense.
(2) X is Cohen-Macaulay.

Remark 2.3. This isn’t the usual definition of rational singularities – we have used
Kempf’s criterion to reformulate it.

Theorem 2.4. If X has rational singularities, and L is a big and nef line bundle
(which would be implied by ampleness), and X is projective, then H i(X,ωX⊗L ) = 0
for all i > 0.

We will give the proof because it will provide useful motivation.
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Proof. Take π : Y → X a resolution of singularities. By definition,

H i(X,ωX ⊗L ) = H i(X,π∗ωY ⊗L ).

By Grauer-Remmert vanishing, the higher direct images of π∗ωY vanish. So this
is the same as H i(X, (Rπ∗ωY ) ⊗ L ) = H i(Y, ωY ⊗ π∗L ). Although ampleness
is not preserved by pulling back through blowups, the pullback of a big and nef
line bundle under blowup is still big and nef. This is actually good enough to get
H i(Y, ωY ⊗ π∗L ) = 0. �

Remark 2.5. The sheaf π∗Y turns out to be independent of the choice of resolution
π : Y → X.

3. Characteristic p

In characteristic p > 0, Kodaira vanishing can fail even for smooth surfaces.
Let X be projective over k with characteristic p > 0, and L be ample. Can we

find a proper surjective map π : Y → X (not necessarily birational) such that

H i(Y, ωY ⊗ π∗L ) = 0 for i > 0?

Now we don’t have resolution of singularities, and even if we did, they needn’t have
this property, since Kodaira vanishing can fail.

But we have a map that does not exist in characteristic 0, namely the Frobenius!
We have

F : OX → F∗OX
sending z 7→ zp. Iterating this, we get OX → F e∗OX . Noting that Y = X, we want

H i(X,ωX ⊗ F e∗L )

to vanish. But note that F e∗L = L pe . For large enough e, this will vanish by
Serre’s theorem (in fact this is a characterization of L being ample!).

Remark 3.1. Deligne observed that this trick could be used to give an algebraic
proof of Kodaira vanishing in characteristic 0.

Definition 3.2. Let X be projective and smooth. Let L be ample, z ∈ X and
π : Y → X be the blowup of X at z. Let E be the exceptional divisor. We define

ε(L, z) := sup{t > 0 | π∗L− tE ample, t ∈ Q}.

If L is (very) ample, then π∗L− tE is ample for small t. This is called the Seshadri
constant at z.

You can think of ε(L, z) as giving some measure of “how positive L is at z”.

Proposition 3.3. If ε(L, z) > dimX, then ωX ⊗ L is globally generated at z.

Proof. If n = dimX, then π∗L − nE is ample (hence big and nef). Consider the
maps.

H0(mz ⊗ ωX ⊗L ) H0(ωX ⊗ L) H0(ωX ⊗L /mx).
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We want to show that the rightmost map is surjective. The sheaf intervening looks
kinda like what it’s in Kodaira vanishing, except for the mz. So we try blowing up:

H0(mz ⊗ ωX ⊗ L) H0(ωX ⊗ L) H0(ωX ⊗ L/mx)

H0(Y, ωY (π∗L− nE)) H0(Y, ωY (π∗L− (n− 1)E)) H0(E,ωE(π∗L− nE|E))

∼

Use ωY = π∗ωX + (n− 1)E to see why you get the numbers above. Continuing the
sequence, we would see H1(Y, ωY (π∗L−nE)) which vanishing in characteristic 0 by
Kodaira.

In characteristic p, we aren’t done yet because we cannot invoke Kodaira vanishing.
Let’s try to use Frobenius again. Dualizing OY → F e∗OY we get F e∗ωY → ωY , and
also F e∗ωY (E)→ ωY (E). Hence we have a diagram

H0(X,mz ⊗ ωX ⊗ L) H0(X,ωX ⊗ L) H0(X,ωX ⊗ L/mx)

H0(Y, ωY (π∗L− nE)) H0(Y, ωY (π∗L− (n− 1)E)) H0(E,ωE(π∗L− nE|E))

H0(Y, F e∗ωY (peπ∗L− penE)) H0(Y, F e∗ωY (E + pπ∗L− penE)) H0(E,ωE(peπ∗L− penE|E))

∼

and now the obstruction H1(Y, F e∗ωY (peπ∗L − penE)) = 0 for large enough e by
ampleness.

We’ll show shortly that since E is a projective space,

H0(E,ωE(peπ∗L− penE|E)) � H0(E,ωE(π∗L− nE|E)).

This will complete the proof. �

4. Frobenius splitting

Definition 4.1. A variety X over a perfect field k of characteristic p is Frobenius-
split (or “F -split”) if the map OX → F∗OX splits. (This implies that OX → F e∗OX
splits for all e.)

Proposition 4.2. Toric varieties (including Pn) are Frobenius split.

Proof. We’ll give the argument forX = Spec k[x±1 , . . . , x
±1]. The splitting ϕ : F e∗OX →

OX will take
xλ11 . . . xλnn 7→ x

λ1/pe

1 . . . xλn/p
e

n

where our convention is that xλi/p
e

i = 0 if λi/pe /∈ Z. �

It is clear that if X is Frobenius split and L is any line bundle on X, then
(1) H i(X,L ) ↪→ H i(X,F e∗L pe) is injective, and
(2) H i(X,F e∗ (ωX ⊗L pe))→ H i(X,ωX ⊗L ) is surjective.
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Remark 4.3. If X is Frobenius-split, then Kodaira vanishing holds for X since

H i(X,F e∗ωX ⊗L pe) � H i(X,ωX ⊗L ).

Example 4.4. For abelian varieties, “Frobenius split” is equivalent to “ordinary”.
Varieties of general type are never Frobenius split. Indeed, note that

H om(F e∗OX ,OX) ∼= H om(F e∗OX(peKX),OX(KX))

∼= F e∗H om(OX(peKX),OX(KX))

∼= F e∗OX((1− pe)KX).

But if X is of general type, OX((1− pe)KX) cannot have global sections for large e.


