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Deligne–Mumford compactification M̄g

Stable curves:
Projective, connected, reduced curves C such that:

Local: at worst nodes: (xy = 0) (locally analytically)

Global: ωC is ample.

What is ωC?
– smooth curve: ωC = ΩC = T ∗C = OC (KC ).
– for any plane curve, Poincaré residue map

< : ωP2(C )|C ∼= ωC

– if C = ∪iCi and Pi ⊂ Ci are the nodes then
ωC |Ci

= ωCi
(Pi).



Higher dimension, basic questions

What are the correct analogs of
smooth, projective curves of genus ≥ 2?

What are the correct analogs of stable curves?

Usually:
EASY: make it work for an open moduli space.
HARD: make it work for a compact moduli space.



Canonical models 0

X n smooth projective variety, floating around.

To get our hands on it, want an embedding X ↪→ PN .

This needs a holomorphic line bundle L on X with
sections s0, . . . , sN ∈ H0(X , L).



Meta claim I

The only vector bundle one can write down on a
manifold/variety is the tangent bundle TX

(and its descendants)

Meta Corollary: The only line bundles are
ωX = Ωn

X = (detTX )∗ (and its powers).

Example 1: (Franchetta conjecture) If C 7→ LC is
holomorphic then LC = ωm

C for some m.
(Harer, Arbarello-Cornalba, Mestrano, Kouvidakis)

Example 2: X smooth, L sufficiently ample.
The only holomorphic
H0(X , L) 3 s 7→ (line bundle on (s = 0)) is:
restrict a line bundle from X to (s = 0). (M. Woolf)



Example 3: (Babylonian towers) The only vector bundles on
P∞ are sums of line bundles. (Tyurin, Barth)

Non-example: If X is projective and ωX is the
only line bundle then
ωX is ample, so minimal model program says X = X .

Meta claim II: On an interesting variety there are many line
bundles, but we have to work hard to find them.



Canonical models 1

Take any ωm
X for m ≥ 1.

Take any basis s0, . . . , sN(m) ∈ H0(X , ωm
X ).

Get a map φm : X 99K Xm ⊂ PN(m).

Theorem (Canonical models)

The closed images Xm are isomorphic to each other for 1||m.
Get X can, the canonical model of X .

– dimX = 2: Castelnuovo, Enriques (+ Mumford)
– dimX = 3: Mori (+ Kawamata, Kollár, Reid, Shokurov)
– dimX ≥ 4: Hacon–McKernan

(+ Birkar, Cascini, Corti, Shokurov)
(+ Fujino-Mori)



ω on a singular variety I.

Recipe: (if X is normal)
Take smooth locus X 0 ⊂ X
ωX 0 = Ωn

X 0 = (detTX 0)∗, then extend it to X .

Powers: ω
[m]
X := extension of ωm

X 0 .

Exercise: A holomorphic line bundle L0 on X 0 has at most
1 extension to a holomorphic line bundle L on X , but it may
have infinitely many extensions as a topological line bundle.



ω on a singular variety II.

• Hypersurfaces: (g = 0) ⊂ Cn. Generator of ω:

(−1)i
dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn

∂g/∂xi

• Quotients: Cn/(finite group G ). Generator of ωm:

(dx1 ∧ · · · ∧ dxn)⊗m

where m = |G/G ∩ SLn|.



Canonical models: internal definition

Canonical singularity: One can pull back pluricanonical
forms: p : Y → X resolution, then we have

p∗ω
[m]
X → ω

[m]
Y .

Canonical model: normal, projective,
– X has canonical singularities and
– ωX is ample.



Moduli and compactification: using GIT directly

Mumford (1965): Mg using GIT,

Mumford, Gieseker (1974-80) M̄g using GIT.

Gieseker (1977): moduli of surfaces using GIT, for
high enough pluricanonical embedding,

Viehweg (1989–95): higher dimensional canonical models,
with well chosen polarization,

Chenyang Xu – Xiaowei Wang (2012) GIT compactification
of the moduli of surfaces forever depends
on the pluricanonical embedding,
(both Chow and Hilbert versions).



Compactification 2: Memento Mori

Lemma. B smooth curve, B0 = B \ {0}
f 0 : Y 0 → B0 a family of canonical models.

There is at most 1 extension to

Y 0 ⊂ Y
f 0 ↓ ↓ f
B0 ⊂ B

such that
– Y has canonical singularities and
– ωY (rather ωY /B) is ample on every fiber.



KSB approach

B smooth curve, B0 = B \ {0}
f 0 : Y 0 → B0 a flat family of canonical models.

• Take any extension f1 : Y 1 → B .
• Resolve singularities f2 : Y 2 → B , write Y 2

0 =
∑

miDi .
• Take base change C → B , ramification order a multiple of

the mi . Get f3 : Y 3 → C . Now Y 3
0 =

∑
D ′i .

• Take canonical model to get f : Y → C .

Y 0 ← Y 0
C ⊂ Y

f 0 ↓ f 0C ↓ ↓ f
B0 ← C 0 ⊂ C .



In order to apply this we need

• special Y0 should have ???? singularities

Curve case: (xy = 0) is not canonical but
(xy + tn = 0) is canonical.

Needed in general case: 0 ∈ D ⊂ X , Cartier divisor.
Assume X \ D has canonical sings and D has ????
⇒ X has canonical sings.

Definition: ???? = semi-log-canonical.



What is semi-log-canonical?

What is a node?



What is a node?

C = (xy = 0) ⊂ C2.
generating section σ of ωC

σ =
dx

x
on x-axis, σ = −dy

y
on y -axis.

Characterizations of nodes:

Using resolutions: p : D → C then p∗σ has only
simple poles.

Using local volume: Although the local volume is

i

2π

∫
|x |≤1

dx

x
∧ dx̄

x̄
=∞,

it has only logarithmic growth:

i

2π

∫
|x |≤1
|x |εdx

x
∧ dx̄

x̄
<∞ for ε > 0.



What is semi-log-canonical?

Take a resolution f : Y → X . Write
KY = f ∗KX + J and f ∗D = DY + E .
• J ≥ 0 iff X has canonical singularities and
• Mumford’s semi-stable reduction: may assume that all

coefficients in E equal 1.

Adjunction formula: KDY
=(

KY +DY

)
|DY

=
(
f ∗(KX+D)+J−E

)
|DY

= f ∗KD+(J−E )|DY

Suggests: J ≥ 0 ⇔ (J − E )|DY
≥ −1.

Almost what we want, but no information on
exceptional divisors that are disjoint from DY .

Convexity of the coefficients of J settles the rest.
(Shokurov, Kollár, Kawakita, de Fernex-Kollár-Xu)



Definition of semi-log-canonical

X only nodes in codimension 1. So ωX makes sense and ω
[m]
X

is locally free for some m > 0.
Using resolutions: f : Y → X with reduced exceptional
divisor E , then we have pull-backs

f ∗
(
ω
[r ]
X

)
→ ω

[r ]
Y (rE ) ∀r .

Using local volume: σm: generating section of ω
[m]
X .

Although the local volume is
∫
σ ∧ σ̄ =∞, it has only

logarithmic growth:(
i?
)
·
∫
|g |ε · σ ∧ σ̄ <∞

for every g vanishing on SingX and ε > 0.



Examples of semi-log-canonical singularities

• dim=2: canonical = smooth + Du Val
(xy + zn = 0,..., x2 + y 3 + z5 = 0)

• dim=2: log ternimal = C2/(finite group)

• dim=n examples:
cone over X ⊂ PN is lc (or slc) iff X is lc (or slc)

and −KX ∼ rH for some r ≥ 0.

cone over X ⊂ PN is canonical iff X is canonical
and −KX ∼ rH for some r ≥ 1.



Stable curves → Stable varieties

X : projective, connected

Local condition: semi-log-canonical singularities
Global condition: ωX is ample.

What are stable families?

Wrong answer:
Flat, projective morphisms with stable fibers.



Example I

Family of varieties in P5
x × A2

st :

X :=

(
rank

(
x0 x1 x2

x1 + sx4 x2 + tx5 x3

)
≤ 1

)
.

Claim: the following are equivalent:

– Xst is semi-log-canonical (in fact klt)
– 3KXst is Cartier
– either (s, t) = (0, 0) or st 6= 0.

Being stable is not a locally closed condition.



Case 1: st 6= 0:(
x0 x1 x2

x1 + sx4 x2 + tx5 x3

)
→
(

x0 x1 x2
x4 x5 x3

)

This is P1 × P2, hence even smooth.



Case 2: s = t = 0:(
x0 x1 x2

x1 + sx4 x2 + tx5 x3

)
→
(

x0 x1 x2
x1 x2 x3

)

This is the 2-cone over P1 ↪→ P3.
The singularity is locally like C3/1

3
(1, 1, 0):

Z/3Z acts with (ε, ε, 1).



Case 3: s = 0, t 6= 0:(
x0 x1 x2

x1 + sx4 x2 + tx5 x3

)
→
(

x0 x1 x2
x1 x5 x3

)

This is the cone over F1 ↪→ P4.
F1 is Fano but its anticanonical embedding is into P7.
Here −KF1 is not proportional to H ∩ F1.



Example II – with ample K

Let Ym ⊂ P6
x × C1

t be the family

∑
xmi = 0 and rank

(
x0 x1 x2

x1 + tx4 x2 + tx5 x3

)
≤ 1.

• Ym → C1
t is flat, projective

• stable fibers for m ≥ 5,
•
(
K 3

Ym,t

)
is not locally constant.



Stable families

Theorem (K. 2015) Let X → S be a flat, projective
morphisms with stable fibers, S reduced. Equivalent:

1 The volume of the fibers s 7→
(
K n

Xs

)
is locally constant.

2 The plurigenera s 7→ h0
(
Xs , ω

[m]
Xs

)
are locally constant.

3 ω
[m]
X/S is flat and commutes with base change ∀m.



Definition of stable families

S any Noetherian scheme.
A morphism f : X → S is stable iff

1 f is flat, projective with stable fibers and

2 ω
[m]
X/S is flat and commutes with base change ∀m.



Stability is representable

– f : X → S : flat family, projective of pure relative dim n
– fibers at worst nodal in codim 1.

Theorem
In characteristic 0, there is a monomorphism

iS : S stable → S

such that, for every g : T → S , the following are equiv.

1 The pull-back fT : XT → T is stable.

2 g factors through iS .



Main existence theorem

Fix positive n, d .
There is a projective coarse moduli space M̄n,d parametrizing
stable varieties X of dimension n such that (K n

X ) = d .

• moduli properties as good as for M̄g ,
• as a scheme, much more complicated.

(Note: Proofs are complete in characteristic 0 only.)



History of the proof

Surfaces:
– (background) MMP for 3-folds, Mori
– (existence) K–Shepherd-Barron
– (finite type) Alexeev
– (projectivity) K
– (local structure) arbitrarily bad, Vakil

Higher dimensions
– (background) MMP: Hacon–McKernan + H–M–Xu
– (existence) K
– (finite type) Karu, Hacon–McKernan–Xu
– (projectivity) Fujino, Kovács–Patakfalvi


