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DAG III: EXAMPLES

BEN ANTIEAU

1. Picard stacks

Let Pic = BGL1 and Br = B2 GL1. (In other language, Pic classifies GL1-torsors
and Br classifies GL1-gerbes.)

Remark 1.1. For a discrete ring R, Br(R) is valued in 2-truncated spaces S≤2. This
shows that it cannot be represented by an Artin stack, as Artin stacks are valued in
groupoids.

Example 1.2. Let X = (P3,OP3 ⊕ OP3(−4)[1]). Let’s try to compute Br(X ).
There is a hypercohomology spectral sequence that can be used to understand this.

Definition 1.3. Let F ∈ Shvét(dAffk). We define the kth étale homotopy sheaf
πét
k (F) of X to be the étale sheafification of U ↪→ πk(F(U)).

In these terms, we have

πét
i (Br) ∼=


0 i > 0, 1

Gm i = 2

πi−2(O) i ≥ 3

Here by O = OX we mean OP3 ⊕ OP3(−4)[1], viewed as a ring by the square-zero
extension structure. By definition, π0OX ∼= OP3 and π1OX ∼= OP3(−4).

There is a spectral sequence

Est
2 = Hs

ét(X , πét
t Br) =⇒ πt−sBr(X )

The differentials have bidegree |dr| = (r, r−1), hence the spectral sequence collapses
on E2 in our case.

For t = 3, we get

H0(P3,O(−4)) = 0,

H1(P3,O(−4)) = 0

H1(P3,O(−4)) = 0,

H3(P3,O(−4)) ≈ k.
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2 BEN ANTIEAU

For t = 2, we get

H0(P3,Gm) ∼= k×

H1(P3,Gm) ∼= Z,

H2(P3,Gm) ∼= Br(k)

Hence we get an exact sequence

0→ k︸︷︷︸
H3(P3,O(−4))

→ π0Br(X )→ Br(k)→ 0

and we similarly see π1Br(X ) ∼= Pic(P3) ∼= Z, π2(Br(X )) ∼= k×.

Theorem 1.4 (Toën). Every class in π0 Br(X) is represented by a derived Azumaya
algebra.

2. Moduli of objects

Let k be a commutative ring and A be a dg algebra over k.

Definition 2.1. We say A is hfp (“homotopically finitely presented”) if A ∈ Algωk
(the ω notation means categorically compact objects).

Example 2.2. If P is a perfect complex over k, then its tensor algebra T (P ) is hfp.

Example 2.3. Let X/k be smooth and projective. Then Dqc(X) ∼= D(A) where A
is hfp.

Definition 2.4. For R ∈ sCAlgk, letMA(R) be the category of representations of
A in Perf(R), i.e. Funexact(Perf(A),Perf(R)). (Here all categories are regarded as
stable ∞-categories.)

Remark 2.5. Since Perf(A) is generated byA, a functor in Funexact(Perf(A),Perf(R))
can be identified with P ∈ Perf(R) which has an A-action.

Example 2.6. Let X/k be smooth and proper. ThenMX
∼=MA where A is such

that Dqc(X) ∼= D(A). We haveMX(R) = Perf(XR).

Definition 2.7. For any category C, let ιC ⊂ C be the maximal subgroupoid. Let
MA = ιMA.

Now, π0MR is equivalent to the category of isomorphic classes of objects in the
triangulated category Ho(MA(R)).

For P ∈ π0(MR), a perfect R-module with an action of A, we have

πi(MA(R), P ) ∼=

{
HomHo(MA(R))(P, P )× i = 1

Ext1−i
Ho(MA(R))(P, P ) i ≥ 2

Theorem 2.8 (Toen-Vaquié). Let A be hfp over k.
(1) MA is locally geometric and lfp.
(2) For Spec R

P−→MA, we have

P ∗LMA
∼= RHom(P, P )∨[−1].
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Proof. We have a map MA → Mk that forgets the A-action. This is representable,
so for the purpose of the proof we can replace A by k.

Let M [a,b]
k (R) ⊂ Mk(R) be the subcategory of perfect R-modules with Tor-

amplitude in the range [a, b]. It is true that

lim−→M
[a,b]
k
∼= Mk

(ultimately coming from quasicompactness of Spec R).
(1) Next, we use that

M
[0,0]
k =

∐
n≥0

BGLn .

(2) Assume that M [a,b]
k is geometric for every b− a ≤ n− 1, for n ≥ 1. We want

to understand Q ∈M [a,b]
k . We can make a triangle

C → P → Q→ C[1]

where C ∈ [0, n− 1], P ∈ [0, 0] surjects onto Q in H0. This lets us induct.
(3) Consider the diagram

U ιFun(∆1,Mk)

M
[0,n−1]
k ×M [0,0]

k ιFun(∂∆1,Mk) ∼= Mk ×Mk

What is the fiber of U over a pair (C,P ) ∈ M
[0,n−1]
k × M

[0,0]
k ? We need

to give a morphism C → P , which is a point of C∨ ⊗ P , so the fiber is
Spec Sym(C∨ ⊗ P ). So the morphism U → M

[0,n−1]
k ×M [0,0]

k is geometric,
hence (by induction) U is geometric. We claim that the map U → M

[0,n]
k

(obtained by gluing C and P ) is smooth and surjective.
Rather than give the details, we point out an example: if P = k,C =

k[n− 1], then U = Bn−1Ga.
�

3. Derived Picard stack

Let X/k be smooth and proper, geometrically connected, and d-dimensional.
Let dPicX(R) ⊂ MX(R) be the subcategory of invertible objects in Perf(XR).

Exercise: show that this is open. Our formalism implies that it is geometric.
LdPicX ,L [d]

∼= RΓ(X,OX)∨[−1] is concentrated in degrees [−1, d− 1], which tells
us that it is represented by a derived Artin stack.

The adjunction sCAlgk ↔ CAlgk induces

Shvét(dAffk)← Shvét(Affk) : cl∗

Shvét(dAffk)← Shvét(Affk) : cl!

cl∗ : Shvét(dAffk)→ Shvét(Affk)
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For example, for R ∈ sCAlgk and S ∈ sCAlgk, we have
(i) cl∗ Spec R ∼= Spec π0R,
(ii) cl! Spec S = Spec S, and
(iii) cl∗ Spec S(R) = Hom(S, π0(R)).
We have cl∗dPicX ∼=

∐
n∈Z PicX/k, where n tracks the homological degree. The

map to πét
0 looks like the disjoint union of the classical Picard schemes. The fiber of

cl∗dPicX → πét
0 cl
∗dPicX is BGm.

What about the derived picture? The map dPicX to πét
0 dPicX has fiber BGL1,RΓ(X,OX).

This is the sheafification of the presheaf R 7→ BGL1(RΓ(X,OX)⊗L R).
What we want is more like dPicX → dPicX/BGL1 whose fiber is BGL1.


