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THE NOTION OF SINGULAR SUPPORT IN DAG AND ITS
APPLICATIONS II

SAM RASKIN

1. GENERALIZATIONS OF DISCUSSION FROM LAST TIME

Last time we explained that for a hypersurface X = {f = 0} in a smooth Y, and
F € QCoh(X) or F € IndCoh(X), we have an operator n: F — F|[2]. Furthermore,
we had the characterization: F € QCoh(X) C IndCoh(X) if and only if  is locally
nilpotent, i.e. colim F[2n] = 0.

We will now consider a generalization to the case where X is the vanishing locus
of several functions f1, ..., f. in a smooth ambient Y. A generalization of the results
from last time: there are natural

ni: F — F[2]

The 7;’s commute in some sense, and F € QCoh(X) if and only if each 7; acts locally
nilpotently.

Let N' C P! be a closed subvariety. We then get a subcategory IndCoh/(X) C
IndCoh(X) as follows. Let I C k[ni,...,n,] the graded ideal corresponding to N.
Then IndCohpr(X) is the full subcategory of F such that all a € I act locally
nilpotently on F, via the canonical map

ki, - one] = @D End(F, Fln)).

The assignment N/ — IndCohps(X) is containment-preserving; in particular we
have

QCoh(X) = IndCohy(X) C IndCohpr(X) C IndCohpn—1(X) = IndCoh(X).
Our next goal is to generalize this to a setting without coordinates.
Remark 1.1. The smoothness of Y is essential. In the proof, we used this when we
say that the pushforward of a coherent complex on X is perfect on Y.
2. VARIOUS CONSTRUCTIONS

2.1. Hochschild cohomology. Let C be a DG category. Let Z(C) = Endg,q(c)(Idc),
where End(C) is the monoidal DG category of DG functors C — C.

Then Z(C) is a DG algebra. Since Id¢ is the unit in End(C) for the composition,
we get that Z(C) is an algebra object in the category of algebras, i.e. an “Fs-algebra”.
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2 SAM RASKIN

Concretely, this means that H*(Z(C)) is a graded commutative algebra. This Z(C)
is called the Hochschild cohomology of C.
How should we think about this? Suppose you have n € Z(C) = End(Id¢). Then
7 can be thought of as a collection of maps n: F — F for all F € C, natural in F.
Similarly, n € Z(C)[n] can be thought of as n: Id¢ — Id¢[n] inside End(C), i.e. a
collection of F — Fin| for all F, natural in F.

Example 2.1. If X is a suitably finite DG scheme, then we define Z(X) :=
Z(QCoh(X)), and Z(X) = Z(IndCoh(X)). The idea is that if you have a functor
n: F — F[n] for all F € QCoh(X), then you get such a functor for each C € Coh(X),
and then for all 7 € IndCoh(X).

2.2. The Hochschild-Kostant-Rosenberg map. The HKR map goes
DX, Tx[~1]) = Z(X)

where Tx € QCoh(X) is the tangent complex (dual to the cotangent complex).

Here is a construction of this map. Let X be a DG scheme. We form “Aut(X)”
as some kind of group DG ind-scheme. Whatever this is, we should have an action
of Aut(X) on QCoh(X).

Let G be a group DG ind-scheme. (It doesn’t really matter that G is a group.)
There is a construction QG = pt Xg pt, where the fiber product is taken in the
derived sense. You could think of this as Autg(pt).

Then Q Aut(X) is “automorphisms of the identity automorphism of X", hence
acts on Idpy¢(x). By transport of structure, it then acts on Idgoon(x)-

Passing to Lie algebras, we get

Lie(2 Aut(X)) — Endg,q(qcon(x)) (Idqoon(x)) = Z(X).
Here Lie(Q2 Aut(X)) is the tangent complex to Q Aut(X) at Id. Using the diagram

QAut(X) — pt

! !

pt — Aut(X)
we compute Lie(Q Aut(X)) = Tauyx)[—1] = T'(X, Tx)[-1].

2.3. The hypersurface case. Let X = {f =0} C Y. In other words, we have a
fiber square

X ——=Y
[
0 —— Al
We have a map
Txy — Tx = i*Ty 5
and
Tx/y = q"Tojar = Ox[—1].
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Hence we get a map Ox[—1] — T, which we can think of alternatively as & €
(X, Tx[1]).

By the preceding discussion, we have I'(X, Tx[—1]) — Z(X) and ¢ is a class in
degree 2, i.e. a point of I'(X, T'x[—1])[2], and & — n € Z(X)[2].

3. SINGULAR SUPPORT

We will now give a “coordinate-free” approach.

Given a DG scheme X, we can make a reduced (hence classical by definition)
scheme Sing(X).

If X is affine, we define

red
Sing(X) := Spec (@ HZ”(Z(X))> .

We then define

red
PSing(X) := Proj (@HQ”(Z(X))) .

n

We're going to give a key example where this is computable.

Definition 3.1. Let X be a finite type DG scheme. We say that X is lei (or
quasismooth) if Q% (the cotangent complex) is Zariski-locally of the form Cone(P; —
P,) where P; € QCoh(X) are projective, meaning locally direct summands of O%"
(note that no shifts are allowed!).

Example 3.2. If X is smooth, meaning 2} is projective, then X is lci.
Example 3.3. If X arises as a fibered product of the form

X —Y

L

W —— 7
and Y, Z, W are smooth then X is lci (a simple calculation of the cotangent complex).

Fact 3.4. If X is lci, then étale locally X 20 x an A™ for some f: A™ — A".

Remark 3.5. For any classical affine scheme X, there is an lci derived scheme X
with X as its underlying classical scheme, by choosing a presentation of X of the
above form and taking the derived fibered product instead.

Fact 3.6. For X lci affine,
Sing(X) = Spec (Sym H* (X, T'x|ya))™.

The cotangent complex goes towards negative degrees and the tangent complex
goes towards positive degrees. So H'(X®, Tx|y«) is the highest cohomology group,
and measures the failure of X to be smooth.
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Remark 3.7. Think of Sing(X) as analogous to the cotangent bundle of a smooth
variety.

Example 3.8. If X =Y X0, for V a finite-dimensional vector space and Y smooth
with f: Y — V, we have Sing(X) C X*d x V*.

For V' C PSing(X), we define a subcategory IndCohpr(X) C IndCoh(X). Corre-
sponding to N is a graded ideal I C H*(Z (X)) and IndCohx/(X) C IndCoh(X) is
the subcategory where homogeneous elements of I act locally nilpotently.

Example 3.9. If N' = PSing(X) then IndCohpr(X) = IndCoh(X).

Example 3.10. If N' = () then IndCohx/(X) = QCoh(X). To see this, one reduces
to the global complete intersection case by étale descent, and then it follows from
our earlier discussion.



