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THE NOTION OF SINGULAR SUPPORT IN DAG AND ITS
APPLICATIONS II

SAM RASKIN

1. Generalizations of discussion from last time

Last time we explained that for a hypersurface X = {f = 0} in a smooth Y , and
F ∈ QCoh(X) or F ∈ IndCoh(X), we have an operator η : F → F [2]. Furthermore,
we had the characterization: F ∈ QCoh(X) ⊂ IndCoh(X) if and only if η is locally
nilpotent, i.e. colim−−−→F [2n] = 0.

We will now consider a generalization to the case where X is the vanishing locus
of several functions f1, . . . , fr in a smooth ambient Y . A generalization of the results
from last time: there are natural

ηi : F → F [2]

The ηi’s commute in some sense, and F ∈ QCoh(X) if and only if each ηi acts locally
nilpotently.

Let N ⊂ Pr−1 be a closed subvariety. We then get a subcategory IndCohN (X) ⊂
IndCoh(X) as follows. Let I ⊂ k[η1, . . . , ηr] the graded ideal corresponding to N .
Then IndCohN (X) is the full subcategory of F such that all α ∈ I act locally
nilpotently on F , via the canonical map

k[η1, . . . , ηr]→
⊕
n

End(F ,F [n]).

The assignment N → IndCohN (X) is containment-preserving; in particular we
have

QCoh(X) = IndCoh∅(X) ⊆ IndCohN (X) ⊆ IndCohPn−1(X) = IndCoh(X).

Our next goal is to generalize this to a setting without coordinates.

Remark 1.1. The smoothness of Y is essential. In the proof, we used this when we
say that the pushforward of a coherent complex on X is perfect on Y .

2. Various constructions

2.1. Hochschild cohomology. Let C be a DG category. Let Z(C) = EndEnd(C)(IdC),
where End(C) is the monoidal DG category of DG functors C → C.

Then Z(C) is a DG algebra. Since IdC is the unit in End(C) for the composition,
we get that Z(C) is an algebra object in the category of algebras, i.e. an “E2-algebra”.
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2 SAM RASKIN

Concretely, this means that H∗(Z(C)) is a graded commutative algebra. This Z(C)
is called the Hochschild cohomology of C.

How should we think about this? Suppose you have η ∈ Z(C) = End(IdC). Then
η can be thought of as a collection of maps η : F → F for all F ∈ C, natural in F .

Similarly, η ∈ Z(C)[n] can be thought of as η : IdC → IdC [n] inside End(C), i.e. a
collection of F → F [n] for all F , natural in F .

Example 2.1. If X is a suitably finite DG scheme, then we define Z(X) :=
Z(QCoh(X)), and Z(X) ∼= Z(IndCoh(X)). The idea is that if you have a functor
η : F → F [n] for all F ∈ QCoh(X), then you get such a functor for each C ∈ Coh(X),
and then for all F ∈ IndCoh(X).

2.2. The Hochschild-Kostant-Rosenberg map. The HKR map goes

Γ(X,TX [−1])→ Z(X)

where TX ∈ QCoh(X) is the tangent complex (dual to the cotangent complex).
Here is a construction of this map. Let X be a DG scheme. We form “Aut(X)”

as some kind of group DG ind-scheme. Whatever this is, we should have an action
of Aut(X) on QCoh(X).

Let G be a group DG ind-scheme. (It doesn’t really matter that G is a group.)
There is a construction ΩG = pt×G pt, where the fiber product is taken in the
derived sense. You could think of this as AutG(pt).

Then Ω Aut(X) is “automorphisms of the identity automorphism of X”, hence
acts on IdAut(X). By transport of structure, it then acts on IdQCoh(X).

Passing to Lie algebras, we get

Lie(Ω Aut(X))→ EndEnd(QCoh(X))(IdQCoh(X)) = Z(X).

Here Lie(Ω Aut(X)) is the tangent complex to Ω Aut(X) at Id. Using the diagram

Ω Aut(X) pt

pt Aut(X)

we compute Lie(Ω Aut(X)) = TAut(X)[−1] = Γ(X,TX)[−1].

2.3. The hypersurface case. Let X = {f = 0} ⊂ Y . In other words, we have a
fiber square

X Y

0 A1

i

q

We have a map
TX/Y → TX → i∗TY

+1−−→
and

TX/Y = q∗T0/A1 = OX [−1].
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Hence we get a map OX [−1] → TX , which we can think of alternatively as ξ ∈
Γ(X,TX [1]).

By the preceding discussion, we have Γ(X,TX [−1]) → Z(X) and ξ is a class in
degree 2, i.e. a point of Γ(X,TX [−1])[2], and ξ 7→ η ∈ Z(X)[2].

3. Singular support

We will now give a “coordinate-free” approach.
Given a DG scheme X, we can make a reduced (hence classical by definition)

scheme Sing(X).
If X is affine, we define

Sing(X) := Spec

(⊕
n

H2n(Z(X))

)red

.

We then define

PSing(X) := Proj

(⊕
n

H2n(Z(X))

)red

.

We’re going to give a key example where this is computable.

Definition 3.1. Let X be a finite type DG scheme. We say that X is lci (or
quasismooth) if Ω1

X (the cotangent complex) is Zariski-locally of the form Cone(P1 →
P2) where Pi ∈ QCoh(X) are projective, meaning locally direct summands of O⊕nX
(note that no shifts are allowed!).

Example 3.2. If X is smooth, meaning Ω1
X is projective, then X is lci.

Example 3.3. If X arises as a fibered product of the form

X Y

W Z

and Y,Z,W are smooth thenX is lci (a simple calculation of the cotangent complex).

Fact 3.4. If X is lci, then étale locally X ∼= 0×An Am for some f : Am → An.

Remark 3.5. For any classical affine scheme X, there is an lci derived scheme X̃
with X as its underlying classical scheme, by choosing a presentation of X of the
above form and taking the derived fibered product instead.

Fact 3.6. For X lci affine,

Sing(X) = Spec (SymH1(Xcl, TX |Xcl))red.

The cotangent complex goes towards negative degrees and the tangent complex
goes towards positive degrees. So H1(Xcl, TX |Xcl) is the highest cohomology group,
and measures the failure of X to be smooth.
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Remark 3.7. Think of Sing(X) as analogous to the cotangent bundle of a smooth
variety.

Example 3.8. If X = Y ×V 0, for V a finite-dimensional vector space and Y smooth
with f : Y → V , we have Sing(X) ⊂ Xred × V ∗.

For N ⊂ PSing(X), we define a subcategory IndCohN (X) ⊂ IndCoh(X). Corre-
sponding to N is a graded ideal I ⊂ H∗(Z(X)) and IndCohN (X) ⊂ IndCoh(X) is
the subcategory where homogeneous elements of I act locally nilpotently.

Example 3.9. If N = PSing(X) then IndCohN (X) = IndCoh(X).

Example 3.10. If N = ∅ then IndCohN (X) = QCoh(X). To see this, one reduces
to the global complete intersection case by étale descent, and then it follows from
our earlier discussion.


