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COHERENT SINGULAR SUPPORT

SAM RASKIN

1. Meta-overview of mathematical research

(1) The first step is to have something you want to be true.
(2) The second is to calculate something, and usually you realize that your initial

dream has complications.
(3) The third step is to salvage what you can, which is where technical stuff

happens.
The subject of coherent singular support is technical in nature, concentrated in

step (3). But I want to start with (1).

2. What we want

Let k be a field of characteristic 0. We recall the dual numbers k[ε] := k[ε]/ε2.

Lemma 2.1. There is an equivalence between flat k[ε]-modules and extensions

0→ V → E → V → 0

where V is a vector space over k.

Proof. Given 0 → V → E → V → 0 you get a k[ε]-module E where multiplication
by ε is the composition E → V ↪→ E.

Conversely, if M is a flat k[ε]-module we get an extension

0→ V =M/ε
ε−→M → V → 0.

�

We can try to extend this by working in derived categories, and dropping the word
“flat”.

The hope is then to get an equivalence of the form

k[ε]−mod ∼= {V ∈ Vec, η : V → V [1]}.

Here everything is occurring in some suitable derived category.
However this is wrong, and for somewhat subtle reasons. In order to explain why,

we have to give a digression about how to do these sorts of calculations. (It’s possible
to make a mistake and think that you proved this equivalence.)
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2 SAM RASKIN

3. Yoga of derived categories

Let C be a dg category. To first approximation, this means a category enriched
over chain complexes. But we really want to view C as an object in the infinity
category of dg categories, which means that for all practical purposes we cannot
distinguish quasi-isomorphisms from chain complexes. (By contrast, when we look
at chain complexes, it makes sense to make this distinction.)

Assume that C has all (homotopy) colimits, (equivalently, all direct sums).

Definition 3.1. An object F ∈ C is compact if Hom(F ,−) : C → Vect commutes
with all colimits (equivalently, all direct sums). (Here Vect is the derived category
of vector spaces, i.e. chain complexes.)

Example 3.2. Think of compactness as a “smallness” condition, analogous to “finitely
presented”.

Example 3.3. Let A be a ring. Then A ∈ A−mod is compact.

Definition 3.4. A category C is compactly generated if HomC(G,F) = 0 for all
compact G ∈ C implies that F = 0.

In this case, if Cc ⊂ C is the subcategory of compact objects, then you can recover
C canonically via the “ind-category” construction: C = Ind(Cc).
Example 3.5. (A−mod)c = Perf(A), the smallest subcategory of A-mod containing
A and closed under shifts, finite colimits, and direct summands.

Definition 3.6. F ∈ C is a compact generator if F ∈ Cc and HomC(F ,G) = 0 =⇒
G = 0.

Example 3.7. A ∈ A−mod is a compact generator.

Conversely, if F ∈ C is a compact generator then C ∼= A − mod where A =
EndC(F), via the functor Hom(F ,−).

4. The hope, revisited

We now reformulate our hope: let B the tensor algebra T (k[−1]), i.e. the free dg
algebra on k[−1]. Then our hope is that

k[ε]−mod ∼= B −mod.

To prove this, it would be enough to find a compact generator inside k[ε]−mod and
then show that its endomorphisms are B.

Maybe the first thing to try is k[ε], but this will just give the tautological identi-
fication k[ε]−mod ∼= k[ε]−mod.

The interesting thing to try is F = k, where ε acts by 0. A quick calculation
shows that Endk[ε](k) = B. To compute this, use your favorite resolution of k as a
k[ε]-module:

. . .→ k[ε]
ε−→ k[ε]

ε−→ k[ε]→ 0

The Endk[ε](k) will be a B-module, so any element gives a map B → Endk[ε](k), and
then you need to check that this induces an isomorphism on cohomology.
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Exercise 4.1. Check that this corresponds to what we did in the beginning.

However there is a problem: k[ε] is not compact in k[ε]−mod.

Proof. Define Fn to be the naive truncation

Fn = 0→ k[ε]
ε−→ . . .

ε−→ k[ε]→ 0

Then k = colim−−−→n
Fn, but if k were compact it would be a summand of some Fn, and

this would contradict the computation of its self-Ext. In other words, any perfect
complex has the property that Hom out of it vanishes in sufficiently high homological
degree. �

5. Rescuing the hope

Now we have to do something technical.
We define Coh(k[ε]) ⊂ k[ε] − mod to be the full subcategory of bounded com-

plexes with finite-dimensional cohomology. This contains Perf(k[ε]) strictly, since
for example it contains k.

We now claim that
Ind(Coh(k[ε])) ∼= B −mod.

Proof. Apply the previous argument (using that EndCoh(k) = Endk[ε]−mod(k) = B),
using that k is compact in IndCoh(k[ε]) by fiat, and it generates. �

We have an embedding
Perf(k[ε]) ↪→ Coh(k[ε])

which induces a fully faithful functor (on applying Ind)

k[ε]−mod ↪→ IndCoh(k[ε]) ∼= B −mod.

Lemma 5.1. k[ε] − mod corresponds to the full subcategory (B − mod)loc. nilp. of
G ∈ B −mod where

colim−−−→(G → G[1]→ G[2]→ . . .) = 0.

Proof. The functor k[ε]→ k induces the 0 map k → k[1]. Since k[ε]−mod is closed
under colimits, everything lies in this subcategory. �

Example 5.2. There are two versions of “k” in IndCoh(k[ε]). One is gotten from
k ∈ Coh(k[ε]), an the other is the colimit of the Fn. They are different!

Moral: perfect complexes correspond to some kind of “local nilpotency” condition.

Remark 5.3. There is an alternative path we could have taken. If you take the
category of flat k[ε]-modules as a dg category, it is equivalent to IndCoh(k[ε]).

Generalization of this example: let Y be smooth over k. Let f : Y → A1. Consider
X := {f = 0} = Y ×A1 0. (This is a derived scheme if f is not flat.) Let F ∈
QCoh(X). There exists a canonical map F → F [2] naturally in F , constructed as
follows.
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Notation: if g : S → T is a map of (suitably finite) k-schemes, there is a pullback
functor

g∗ : QCoh(T )→ QCoh(S)

and
g∗ : QCoh(S)→ QCoh(T ).

We have a triangle
F [1]→ i∗i∗F

λ−→ F .
(From the Koszul complex one can at least see that this is consistent with the size
of i∗i∗F .) The usual yoga then gives a map F → F [2].

We define Coh(X) ⊂ QCoh(X) to be the full subcategory of bounded complexes
with (locally) finitely generated cohomology groups. If X is a dg scheme with OX
bounded below (not always satisfied but true in our situation), then Perf(X) ⊂
Coh(X). This then induces an embedding QCoh(X) ⊂ IndCoh(X).

For formal reasons, η extends to IndCoh. For formal reasons, η extends to IndCoh,
giving F → F [2].

Proposition 5.4. We can identify QCoh(X) ⊂ IndCoh(X) as the full subcategory
of F where η acts nilpotently, i.e. {F | colim−−−→F [2n] = 0}.

(In the example, η can be thought of as the obstruction to extending F to a
first-order deformation.)

Proof. Let’s show that if η acts nilpotently, then F comes from QCoh(X).
Claim: for all F ∈ IndCoh(X), ker η ∈ QCoh(X).
Proof: it suffices to study F ∈ Coh(X). In this case ker η = i∗i∗F , which is

always in Perf(X). This is because i∗F ∈ Coh(Y ) = Perf(Y ) by Serre’s theorem
(since Y is smooth over k). By induction we get that ker(ηn) = 0 for all n > 0.
Then F ∼= ker(η∞ : F → colim−−−→F [2n]) ∈ QCoh. �


