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Shifted symplectic structures and applications

Tony Pantev

University of Pennsylvania

Introductory workshop
"Derived algebraic geometry and
Birational geometry of moduli spaces’
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m based on joint works with D.Calaque, L.Katzarkov, B.Toén,
G.Vezzosi, M.Vaquié

m shifted symplectic geometry
m derived Darboux theorems

m applications
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Shifted symplectic geometry
©000000

Symplectic structures

Recall: For X a smooth scheme/C is a symplectic structure is
anw € HO(X,Qi’CI) such that its adjoint w” : Tx — Q% is a sheaf
isomorphism.

Note: Does not work for X singular (or stacky or derived):
m Tx and Q}< are too crude as invariants and get promoted to

complexes Tx and Lx.
m A form being closed is not just a condition but rather an extra
structure.

University of Pennsylvania
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Outline Shifted symplectic geometry
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Definition: X derived Artin stack locally of finite presentation (so
that Lx is perfect).

m A n-shifted 2-form w : Ox — Lx ALx|[n] - i.e.

w € mo(A2(X; n)) - is nondegenerate if its adjoint
w” : Tx — Lx[n] is an isomorphism (in Dgcon(X)).

m The space of n-shifted symplectic forms Sympl(X; n) on X/C
is the subspace of A%< (X; n) of closed 2-forms whose
underlying 2-forms are nondegenerate i.e. we have a homotopy
cartesian diagram of spaces

Sympl(X, n) — A% (X, n)

| |

A2(X, n)d ——— A%(X, n)

Tony Pantev University of Pennsylvania
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Shifted symplectic geometry
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Shifted symplectic structures: examples (i)

m Nondegeneracy: a duality between the stacky (positive degrees) and
the derived (negative degrees) parts of Lx.

m G = GL, ~ BG has a canonical 2-shifted symplectic form whose
underlying 2-shifted 2-form is

k — (Lsg A Lgc)[2] = (a"[-1] A g”[-1])[2] = Sym®g”

given by the dual of the trace map (A, B) — tr(AB).

m Same as above (with a choice of G-invariant symm bil form on g)
for G reductive over k.

m The n-shifted cotangent bundle TV X[n] := Specy(Sym(Tx[—n]))
has a canonical n-shifted symplectic form.

Tony Pantev University of Pennsylvania
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Shifted symplectic geometry
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Shifted symplectic structures: examples (ii)

Theorem: [PTVV| Let F be a derived Artin stack and let w €
Symp(F,n). Suppose X is O-compact and equipped with an
O-orientation [X] : H(X,Ox) — C[—d] of dimension d. If the
derived mapping stack MAP(X, F) is a derived Artin stack locally
of finite presentation over C, then, MAP(X, F) carries a canonical
(n — d)-shifted symplectic structure.

Remark:
0) Analog to Alexandrov-Kontsevich-Schwarz-Zaboronsky result.

1) A d-dimensional O-orientation on X is a variant of a
Calabi-Yau structure of dimension d;

2) A compact oriented topological d-manifold has an
O-orientation of dimension d (Poincaré duality).

Tony Pantev

University of Pennsylvania
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Shifted symplectic geometry
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Lagrangian structures
Let (Y,w) be a n-shifted symplectic derived stack. A lagrangian
structureonamap f: X — Yisa
m path v in A%°!(X; n) from f*w to O (isotropic structure),
m which is non-degenerate, i.e. the induced map
6 : Tf — Lx[n— 1] is an equivalence.
Examples:
m usual smooth lagrangians L < (Y,w) where (Y,w) is a
smooth (0)-symplectic scheme.

m there is a bijection between lagrangian structures on the
canonical map X — (SpecC,wp1) and n-shifted symplectic
structures on X (thus lagrangian structures generalize shifted
symplectic structures)

University of Pennsylvania
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Shifted symplectic geometry
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Shifted symplectic structures: examples (iii)

Theorem: [PTVV| Let (F,w) be n-shifted symplectic derived
Artin stack, and L; — F a map of derived stacks equipped with a
Lagrangian structure, i = 1,2. Then the homotopy fiber product
L1 X g Ly is canonically a (n — 1)-shifted derived Artin stack.

In particular, if F =Y is a smooth symplectic Deligne-Mumford
stack (e.g. a smooth symplectic variety), and L; < Y is a smooth
closed lagrangian substack, i = 1,2, then the derived intersection
Ly X g Ly is canonically (—1)-shifted symplectic.

Tony Pantev University of Pennsylvania
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Remark: An important special case is the derived critical locus
RCrit(f) for f a global function on a smooth symplectic
Deligne-Mumford stack Y. Here

R Crit(f) %
C
1% TVY

Tony Pantev University of Pennsylvania
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Local models (i)

Recall: In classical symplectic geometry the local structure of a
symplectic manifold is described by the Darboux theorem:

Tony Pantev University of Pennsylvania
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Local models (i)

Recall: In classical symplectic geometry the local structure of a
symplectic manifold is described by the Darboux theorem: 2
symplectic structure is locally (in the C* or analytic setting) or
formally (in the algebraic setting) isomorphic to the standard
symplectic structure on a cotangent bundle.

University of Pennsylvania
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Local models (i)

In the derived and stacky setting there are two natural incarnations
of an n-shifted symplectic cotangent bundle:

(a) The shifted cotangent bundle
Tylnl = RSpec ), (Symd,,, (Tm[—n])), equipped with n-th
shift of the standard symplectic form;

(b) The derived critical locus Rerit(w) of an n+ 1 shifted
function w : M — Al[n + 1], equipped with the inherited
n-shifted symplectic form wrerit(w)-

(a) is a special case of (b) corresponding to the zero
shifted function.

Tony Pantev

University of Pennsylvania
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Local models (ii)

Remark: e Shifted cotangent bundles are too restrictive to serve
as local models of shifted symplectic structures.

e Derived critical loci of shifted functions have enough flexibility
to provide local models. This leads to a remarkable shifted version
of the Darboux theorem:

University of Pennsylvania
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Local models (ii)

Theorem: [BBBJ'2013] Let X be a derived Deligne-Mumford
stack, and let w b& an n-shifted symplectic structure on X, with
n<0.
Then, étale locally (X, w morphic to (Rerit(w), wrerit(w)) for
some shifted function w : M — A™4 1] on a derived scheme M.

\

0O.Ben-Bassat, C.Brav, V.Bussi,
D.Joyce

Tony Pantev University of Pennsylvania
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Local models (ii)

Theorem: [BBBJ'2013] Let X be a derived Deligne-Mumford
stack, and let w be an n-shifted symplectic structure on X, with
n<0.

Then, étale locally (X, w) is isomorphic to (Rcrit(w), wrerit(w)) for
some shifted function w : M — Al[n + 1] on a derived scheme M.

Question: Find additional geometric structures that will ensure a
global existence of a potential?

Tony Pantev University of Pennsylvania
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Local models (iii)

Answer: Potentials always exist in the presence of isotropic
foliations.

Tony Pantev University of Pennsylvania
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Local models (iii)

Theorem: Let X be a derived stack, locally of f.p. and let w be
an n-shifted symplectic structure on X. Assume:

e wis exact, i.e. [w] =0 € HpR(X);

e (X,w) is equipped with an isotropic foliation

(Z,h)= (L, o, € h).

Then there exists

e a shifted function f : [X/.#] — Al[n+ 1], and

e a symplectic map s : X — Recrit(f) of n-shifted symplectic
stacks, i.e. S*WRerit(f) = w-
Moreover, if (£, h) is Lagrangian, then s is étale.

Tony Pantev University of Pennsylvania
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Local models (iv)

This connects directly to the [BBBJ’2013] Darboux
theorem because of the following result:

Theorem: Let X be a derived stack, locally of f.p. and let w be
any n-shifted closed p-form on X with n < 0. Then w is exact, i.e.
[w] =0 € Hpp(X) = H* (A%(X)).

[w] € HEE™(X) and in general HEL"(X) # 0. So the
statement is not a triviality.

Tony Pantev University of Pennsylvania
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Examples
Examples (i)

(1) Derived critical loci. Let Z be a smooth scheme,

w : Z — Al a regular function. Consider X = Rcrit(w) with its
inherited (—1)-shifted symplectic structure WRerit(w)- Let

1 : X — Z be the natural map, and let %, = (]LX/Z,res, dDR) be
the associted tangential foliation. Then:

Claim: e The foliation .4, has a natural Lagrangian

structure h. R
e The quotient [X/.Z)] = Zyix(w) is the formal completion of Z
along crit(w) = to(X).
e The potential f : Zgjyw) — Al associated with h is given by

f=w,s .
|Zcrit(w)

University of Pennsylvania
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Examples

Examples (ii)

If Z € dStc is a derived stack locally of finite type,
w : Z — Al[n] is an n-shifted function, and X = Rerit(w) % Z,
then

Claim: e The foliation ., has a natural Lagrangian structure
h.

e The quotient [X/.%] = X, is the relative completion of X
along 1. R

e The potential f : Zgigw) — Al[n] associated with h is given

by f = W%,

Tony Pantev University of Pennsylvania
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Examples

Examples (iii)

(2) Cotangent bundles. If M is a smooth manifold, and
e X =TYM,
e w = (the standard symplectic structure).

Then: The natural projection 7 : X — M gives rise to a
tangential foliation . = (L, res, dpr) which is Lagrangian.

In this case:

o [X/Zx] = (X/M)pr,

o f =0 viewed as a 1-shifted function,
and we get an identification Rerit(f) = T)[1 — 1] = X together
with the natural 0-shifted symplectic forms.

Tony Pantev University of Pennsylvania
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Examples

Examples (iv)

(3) Twisted cotangent bundles. Suppose M is a smooth
manifold over C and

ne® (M,951]) =12 (M,04, % ).
Such 7 gives rise to an algebraic symplectic manifold - the
|twisted cotangent bundle| (7 = Xy = M, wy).

m The tangential foliation .Z7, is Lagrangian.

m If w, is exact, then (X, w,) will be symplectically isomorphic
to Rcrit(f) for a 1-shifted function f on

[Xn/gﬂn] = (Xn/M)DR-

Tony Pantev University of Pennsylvania
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Examples

Examples (v)

We are looking for a shifted function f : (X,/M)p, — Al[1], or
equivalently for an element

f € HY (M, Hpg(X/M)) = H! (M, O).
By construction [w,] = 0 € H35(X,) if and only if 1) is in the
image of the map d : H! (M,Op) — H! (M,Q,\Z/,l[l]).
Therefore w;, is exact precisely when we can find f € H* (M, Op)
such that n = df. This f is the shifted function provided by the

theorem, i.e.
(Xm wﬁ) = (RCI’it(f), chrit(f))-

Note that as in the classical case f is only unique up to a
class in HY(M,C), i.e. up to a (locally) constant 1-shifted function

on (X,/M)pg-

University of Pennsylvania
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Examples

Examples (vi)

(4) Integrable systems. Let (X,w) be an exact symplectic
manifold, and let
h: X —>B

be a smooth completely integrable system structure on X.
Again the tangential foliation .}, is Lagrangian and
[X/ %] = (X/B)pr and by the theorem we can find

f: (X/B)DR — Al[].]
such that (X,w) = (Rerit(f), wrerit()) -

University of Pennsylvania
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Examples
Examples (vii)

Now note that

Mapgst, ((X/B)or, AM[1]) == H' (B, Hpr(X/B))
U

HO (B, h.% )

If A e H° (X,Qk) is such that w = d\, then X\ maps to a relative
1-form \r¢ ¢ HO (X,Q%UB) = H° (B,h*Q}qB). One now
checks that f = A"/,

The full form X also plays a role in the picture. It defines
the map s : X — Recrit(f).

Tony Pantev University of Pennsylvania
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Examples

Examples (viii)

Indeed, if A is a reduced C-algebra, then (X/B)pr(A) = X(A),
i.e. ((X/B)pr)red = X. In particular fi((x/B)pr).q = 0 as it is
the image of f = e € HO (B, h*Q}qB) C HY (B, H%(X/B)) in
HY(X,0).
Therefore Rerit(f)(A) = Rerit(0)(A) = TYX(A) i.e.
Rerit(f)req = TV X.
Since X itself is reduced, the map s : X — Rcrit(f) will factor as

X —— Recrit(f)ed —— Recrit(f)

v
s

and it can be checked that the map X — TVX coincides with the
section A.

Tony Pantev University of Pennsylvania
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Constructions

Higher Chern-Simons functionals (i)

Let M be a compact oriented C* manifold of dimension
d =2k + 1. Choose a Morse-Smale function p: M — R.

a self-indexing Morse function, i.e.
for every x € crit(u) we have

p(x) = ind,(x).

Tony Pantev University of Pennsylvania
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Constructions

Higher Chern-Simons functionals (i)

Let M be a compact oriented C* manifold of dimension
d =2k + 1. Choose a Morse-Smale function p: M — R.
Choose c € (k,k +1), and let M+ := =1 ((—o0,c]). Then

m M is a manifold with boundary;

m the inclusion M™ < M induces a homotopy equivalence
between M and the k-dimensional skeleton of M.

Fix a complex reductive group G, and let

Bung(M) = Mapys;.(M, BG) be the derived moduli stack of
G-local systems on M. By [PTVV]| Bung(M) carries a natural
2 — d-shifted symplectic structure w, and so if k > 1, it follows
that w is exact.

Tony Pantev University of Pennsylvania
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Constructions

Higher Chern-Simons functionals (ii)

Theorem: [KPTVV| The tangential foliation for the restriction
morphism
res” : Bung(M) — Bung(M™)

can be equipped with a natural isotropic structure h which depends
only on the orientation data of M and the shifted symplectic form
on BG.

Hence we can find a shifted function

f : (Bung(M) /Bung(M™)) . — A'[2 — 2]

and a symplectic map

s : (Bung(M),w) — (Rerit(f), wrerit(f)) -

Tony Pantev University of Pennsylvania
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Constructions

Potentials in non-abelian Hodge theory (i)

Let M be a smooth projective variety with dim¢ M = d and
consider the derived stack of rank n local systems on M:

X := Loc,(M) = Mapys,. (M, BGL,).

From [PTVV] we know that X is equipped with a natural
(2 — 2d)-shifted symplectic structure wx. This symplectic
structure comes with natural refinements:
m Tx has a natural Hodge filtration.
m (X,wx) is the general fiber of a C* twisted symplectic family
(%,W%‘/Al) — A of moduli of A-connections, and on
tangent complexes this gives the standard Hodge filtration.

Tony Pantev University of Pennsylvania
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Constructions

Potentials in non-abelian Hodge theory (ii)

This implies

Claim: The natural map ©,,, : Tx — Lx|[2 — 2d] given by wx is
a filtered quasi-isomorphism for the Hodge filtrations.

As a consequence in the middle degree one gets:
Theorem: When d = 2k + 1, the natural map

F*Tx — Tx

admits a canonical structure of a Lagrangian foliation. In particular
(X,wx) (and the corresponding Higgs moduli) are identified with
the critical locus of a shifted potential.

Tony Pantev University of Pennsylvania
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Constructions

Potentials in non-abelian Hodge theory (iii)

Remarks:

(1) The foliation FAT1Tx — Tx is the tangential foliation for the
map res<k*1: X — LocSK(M).

derived moduli stack of dg mod-
ules over (QAS/,k,d> which are lo-

cally free of rank n

Tony Pantev University of Pennsylvania
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Constructions

Potentials in non-abelian Hodge theory (iii)

Remarks:

(1) The foliation FAT1Tx — Tx is the tangential foliation for the
map res<k*1: X — LocSK(M).

(2) If k =0, then Locs(M) = Bun,(M) and the map
res<0 : X — Bun,(M) is a twisted cotangent bundle.

(3) If k > 1, then the map induces an isomorphism of truncations
ts_xLoc,(M) — t-_xLocSK(M).

(4) The full untruncated stack X = Loc,(M) is recovered as a

critical locus of a shifted function on
(Loca(M) /Loc;*(M)) 5 which cna be checked again comes

from an element f € H?72k (Locs*(M), 0).

Tony Pantev University of Pennsylvania
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Reduced obstruction theories

DT invariants of abelian 3-folds (i)

A - a 3 dimensional complex abelian variety;
M - a component of the moduli stack of coherent sheaves on A.

Note: Such M's have a symmetric perfect obstruction theory
(which can be refined to a (—1)-shifted symplectic structure) but
the associated Donaldson-Thomas invariants often vanish (due to
deformation invariance).

Tony Pantev University of Pennsylvania
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Reduced obstruction theories

DT invariants of abelian 3-folds (ii)

[BOPY’2015]: To get meaningful counts modify the obstruction
theory by removing two dual pieces in the tangent complex: the
piece controlling the obstructions to deforming the Chern classses
to Hodge classes, and the piece controlling the deformations
coming from the translation action of A.

University of Pennsylvania
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Reduced obstruction theories

DT invariants of abelian 3-folds (ii)

[BOPY’2015]: To get meaningful counts modify the obstruction
theory By removing two dual pieces in the tangent complex: the
piece co lling the obstruct|ons to deforming the Chern classses
to Hodge classes, a controlling the deformations
coming from the translation action

J. Bryan, G. Oberdieck,
R. Pandharipande, Q. Yin

University of Pennsylvania
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Reduced obstruction theories

DT invariants of abelian 3-folds (ii)

[BOPY’2015]: To get meaningful counts modify the obstruction
theory by removing two dual pieces in the tangent complex: the
piece controlling the obstructions to deforming the Chern classses
to Hodge classes, and the piece controlling the deformations
coming from the translation action of A.

[BOPY’2015]: The procedure results in a reduced symmetric
obstruction theory on [M/A] and gives rise to new reduced DT
invariants of A, computed in terms of Jacobi forms.

Tony Pantev University of Pennsylvania
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Reduced obstruction theories

DT invariants of abelian 3-folds (iii)

The reduced obstruction theory comes from a
(-1)-shifted symplectic structure which is a symplectic reduction of
the standard (-1)-shifted symplectic structure on the stack of
perfect complexes.

Tony Pantev University of Pennsylvania
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Reduced obstruction theories

DT invariants of abelian 3-folds (iii)

The reduced obstruction theory comes from a
(-1)-shifted symplectic structure which is a symplectic reduction of
the standard (-1)-shifted symplectic structure on the stack of
perfect complexes.

M = to(X) where X is the corresponding component of
MAP(A, Perf) and X. X comes equipped with a (—1) shifted
symplectic structure w. The [BOPY’2015] theorem can be
repackaged in the following statements:

Tony Pantev University of Pennsylvania
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Reduced obstruction theories

DT invariants of abelian 3-folds (iv)

m The A-action on (X,w) is Hamiltonian and has an
A-equivariant moment map p: X — aV[-1].

m /4 is equal to zero on the truncation M = tyX, and so
Ru~1(0) is M with a different derived structure in which the
three dimensional space of obstructions is killed.

m The reduced symmetric obstruction theory on [M/A] is the
symmetric obstruction theory corresponding to the
(—1)-shifted symplectic structure on [Ru~1(0)/A] coming
from the symplectic reduction.

Tony Pantev University of Pennsylvania
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Reduced obstruction theories

DT invariants of abelian 3-folds (iv)

m The A-action on (X,w) is Hamiltonian and has an
A-equivariant moment map p: X — aV[-1].

m /4 is equal to zero on the truncation M = tyX, and so
Ru~1(0) is M with a different derived structure in which the
three dimensional space of obstructions is killed.

m The reduced symmetric obstruction theory on [M/A] is the
symmetric obstruction theory corresponding to the
(—1)-shifted symplectic structure on [Ru~1(0)/A] coming
from the symplectic reduction.

Note: Explicitly [Ru=1(0)/A] is the derived intersection of two
Lagrangians in [aY[—1]/A] = Tg,: the zero section and
ps [X/A]l = [aY[-1]/A]

Tony Pantev University of Pennsylvania

Shifted symplectic structures



Some applications
0000®

Reduced obstruction theories

Note: The same construction is expected to work for the classical
reduced obstruction theory on a K3 surface S: it should be the
symplectic reduction of the (—1) shifted symplectic structure on
the stack of perfect complexes on S x E symplectically reduced by
the action of the elliptic curve E.

University of Pennsylvania
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Shifted differential operators
Azumaya property of quantizations (i)

X - a smooth scheme over a perfect field k of characteristic p > 0.
S = T¢[n] - the n-shifted cotangent bundle of X.
o/ - the shifted quantization of Og.

Conjecture: [Hablicsek,Haugseng, ...] Consider the Frobenius
twist S’ of S and the zero section i : X’ — S’. Then the algebra
&/ can be regarded as an E,;j-algebra over Og/ so that:

[Weak Morita equivalence:] The (0o, n+ 1)-category of coherent
i*o/-modules is equivalent to the (oo, n+ 1)-category of coherent
Os-modules (Os is viewed as an E,-algebra).

[Weak Azumaya property:] Etale locally over X, the (00, n+ 1)-
category of coherent «7-modules is equivalent to the (oo, n+ 1)-
category of coherent Og/-modules.

Tony Pantev University of Pennsylvania
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Shifted differential operators
Azumaya property of quantizations (ii)

Consider S = TY[1]. In this case &/ has an explicit model - the
crystalline Hochschild cosimplicial complex.

Remark: [Hablicsek] The pullback i*<7 is the Ox:-linear
Hochschild cosimplicial complex of polydifferential operators
Yiffo,., (0%, Ox) which is not Morita equivalent to Ox:.

Nevertheless we have

Theorem: [Hablicsek| If we view Ox: as an E; algebra, then the
category of coherent Ox,-modules is equivalenct to the full thick
subcategory of coherent Ziffo,,(O%, Ox)-modules generated by
Ox.

Tony Pantev University of Pennsylvania
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Tangent complexes

Tangent complex
X € dStc, x : Spec(C) — X a point

of the homotopy fiber of

<Sta|k Tx x of the
X(Cle]) = X(C)Quer x

normalized chain  complex
tangent complex > -

| simplicial abelian group

Tony Pantev University of Pennsylvania
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©00
Tangent complexes

Tangent complex

X € dStc, x : Spec(C) — X a point

normalized chain  complex
<f:r?|gker?‘;xc’;r:;c)lteze> = | of the homotopy fiberp of
X(Cle]) = X(C) over x
When X is a moduli stack:
H=Y(Tx ) = infinitesimal automorphisms of x;
H°(Tx ) = infinitesimal deformations of x;
HY(Tx ) 2 obstructions of x.

Tony Pantev

Shifted symplectic structures
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Tangent complexes

Examples

m X =BG =[pt/G] = Txpt = g[1].

m X = derived intersection L x',(,, Ly =(LiNLy, O ®(L9M OL,)
of smooth subvarieties L1, > C M in a smooth M =
Txx=[Tiyx® Tiox = Tmxl

HY (Tx x) = Triniox
HY(Tx ) = failure of transversality.

m X = moduli of vector bundles E on a smooth projective Y =
Tx.e = RT(Y,End(E))[1].
m X = moduli of maps f from C to Y = Tx ¢ = RI(C,f*Ty).

m X = moduli of local systems [E on a compact manifold Y =-
Tx k= RI(Y,End(E))[1].

Tony Pantev University of Pennsylvania
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Tangent complexes

Cotangent complex
A € cdgac, X = RSpec(A) € dStc,
A" — A a cofibrant (semifree) replacement

cotangent complex \ [ Kahler differentials
(LX:LA )‘(Q}\,ofA/ )

If X € dStc is a general derived Artin stack, then

X = hocolim{RSpec A — X} (in the model category dStc) and

Lx = holimgspec A—x La
Note:

B Lx € Lgeon(X) - the dg category of quasi-coherent Ox
modules.

m X is locally of finite presentation iff Lx is perfect. In this case

TX = L}/( = Hom(]Lx,Ox).
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Forms and closed forms

p-forms

A € cdgac, X = RSpec(A) € dStc,
A" — A a cofibrant (semifree) replacement. Then:

®p>0 Ny La = ®p>0Q, - a fourth quadrant bicomplex with
vertical differential d : Q% — Q5" induced by d, and

horizontal differential dpg : Q5 — Q5" given by the de Rham
differential.

Hodge filtration: F9(A) := @540 still a fourth quadrant
bicomplex.
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Forms and closed forms

(shifted) closed p-forms

Motivation: If X is a smooth scheme/C, then Qféd = (Q)Z(p, d).

Use (Q)>—<p, d) as a model for closed p forms in general.

Definition:
m complex of closed p-forms on X = RSpec A:
AP(A) = totl1(FP(A))[p]
m complex of n-shifted closed p-forms on X = RSpec A:
AP (A; n) = totH(FP(A))[n + p]
m Hodge tower:
- = AP(A)—p] > AP (AL — p] -+ = A%(A)

Tony Pantev University of Pennsylvania

Shifted symplectic structures



Odds and ends
0080000

Forms and closed forms

(shifted) closed p-forms (ii)

Explicitly an n-shifted closed p-form w on X = RSpec A is an
infinite collection

satisfying
dprw; = —dwiy1.

Note: The collection {w;};~; is the key closing w.
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Forms and closed forms

p-forms and closed p-forms

Note:

m The complex A%</(A) of closed 0-forms on X = RSpec A is
exactly lllusie’s derived de Rham complex of A.

m There is an underlying p-form map
AP (A n) — APLa/i[n]

inducing
HO(AP(A)[n]) — H(X, APLay).

m The homotopy fiber of the underlying p-form map can be very
complicated (complex of keys): being closed is not a property
but rather a list of coherent data.
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Forms and closed forms

Functoriality and gluing:

m the n-shifted p-forms oo-functor
AP(—; n) : cdgac — SSets : A | QF,[n] ~ (AQLA)[n] |
m the n-shifted closed p-forms oco-functor
AP (—; n) : cdgac — SSets : A — | AP/ (A)[n] |
m AP(—;n) and AP (—; n) are derived stacks for the étale
topology.

m underlying p-form map (of derived stacks)

AP’CI(—; n) — AP(—; n)

Notation: | — | denotes Mapc_dgniod(C, —) i.e. Dold-Kan applied
to the < O-truncation [dg-modules have cohomological differential]
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Forms and closed forms

global forms and closed forms

For a derived Artin stack X (locally of finite presentation /C) we
have

Definition:
m AP(X) := Mapgst.(X,.AP(—)) is the space of p-forms on X;
m AP(X) := Mapgse. (X, AP (—)) is the space of closed
p-forms on X;
m the corresponding n-shifted versions :
AP(X; n) := Mapgs. (X, AP(—; n))
AP(X; n) = I\/IapdSt(C(X,.Ap’d(—; n))
m an n-shifted (resp. closed) p-form on X is an element in
70 AP(X; n) (resp. in moAP<(X; n))
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Forms and closed forms

global forms and closed forms (ii)
Note:
m If X is a smooth scheme there are no negatively shifted forms.
m If X = RSpec A then there are no positively shifted forms.

For a general X shifted forms potentially exist for any n € Z.
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Forms and closed forms

global forms and closed forms (ii)
Consider the underlying p-form map (of simplicial sets):

AP(X; n) — AP(X; n),

then:

m This map is not a monomorphism for general X, its homotopy
fiber at a given p-form wyq is the space of keys of wy.

m If X is a smooth and proper scheme then this map is a mono
(homotopy fiber is either empty or contractible) = no new
phenomena in this case.

m Theorem (PTVV): For X derived Artin,

AP(X; n) = Mapr, . x)(Ox, (APLx)[n]) (smooth descent)

m in particular a n-shifted p-form on X is an element in

H"(X, APLx)
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Examples

Examples (i):

(1) If X = Spec(A) is an usual (underived) smooth affine scheme,

then
APX; 1) = (n( Q4 -2 Q5T 5 )) ],
0 1
and hence
0, n<0
WOAP’CI(X; n) — QZ,CI’ n=0

HREP(X), n>0

e.g. if X = C*, then dz/z € mp.A“(X;0) and also
dz/z € mp A% (X; 1).
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Examples

Examples (ii):

(2) If X is a smooth and proper scheme, then
T APE(X; n) = FPHEEP™'(X).

(3) If X is a (underived) higher Artin stack, and X, — X is a
smooth affine simplicial groupoid presenting X, then

70 AP(X; n) = H"(QP(X,), d) with § = Cech differential.

In particular if G is a complex reductive group, then

0, n#p

P(BG: n) —
ToATBG:n) {(Sym'gv)c, n=p.
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Examples
Examples (iii):
(4) Similarly
AP(BG; n) = H(Symp+’ ) [n+p—2i]|,
i>0

and so

if nis odd

0
.AP’CI BG; = ;
moAP(BG; n) {(Sympgv)G . if nis even.
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Examples (iv):
(5) If X = Rzero(s) for s € H%(L, E) on a smooth L, then

1 (VS)b
Qx = E|\§ - sz’
-1 0

and if we choose V local flat algebraic connection on E we can
rewrite Q}< as a module over the Koszul complex:

2 18 18 1 1
e ——= A EV®QL—>EV®QL—>QL—>QL|Z 0

T e e
b

-—>/\2EV®EVL>EV®EV;>EV—>EV

1z -1
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Examples (v):
In the same way we can describe Q§< as a module over the Koszul

complex
= NEVQQ] —— EV Q7 Q2 QF , 0
4 4 4 A
= MNEVREVRQ-EVREYRQ -EVRQ = (EY®Q)z -1
A A A A
. — N2EV @ S2EY —= EY © S?EV S2EV S2EV|Z -2
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Examples (v):
In the same way we can describe Q§< as a module over the Koszul

complex
._._>/\2EV®QE4>EV®Q% QE Q%|Z 0
t ! !
= NEVQEV @O ~EY @ ENQQE = EY 0 Q) = (EY 2 Q) -1
} d !
. — NEY @ SPEV —> EV ® S?EV | —SE¥|z =2

2 forms of degree —1
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Examples

Examples (v):
In the same way we can describe Q§< as a module over the Koszul

complex
- ——=NEVRQ ——EV Q] Q7 QF , 0
4 4 4 A
= MNEVREVRQ-EVREYRQ -EVRQ = (EY®Q)z -1
A A A A
. — N2EV @ S2EY —= EY © S?EV S2EV S2EV|Z -2

Note: The de Rham differnetial dpg : Q}< — Q§< is the sum
dpr = V + Kk, where k is the Koszul contraction

ki NEY @ SPEY — NTTEY @ SPHIEY.
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Examples (vi):
Important Remark: [Behrend] If E = Q} and so s is a 1-form,
then a 2-form of degree —1 corresponds to a pair of elements

€ ()" ®Qf and ¢ € (Q})” ® Q] such that [V, s’](¢) = s’(«).

Take ¢ =id € (Q])" ® Q]. Suppose the local V is chosen so that
V(id) = 0 (i.e. V is torsion free). Then [V, s’](id) = ds.

Conclusion: The pair («,id) gives a 2-form of degree —1 iff
ds = sb(a), or equivalently dsz =0, i.e. is an almost closed
1-form on L.

Suppose s is almost closed and let (o, id) be an
associated 2-form of degree —1. Describe the complex of keys for
(o, id) if it exists.
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Twisted cotangent bundles

Twisted cotangent bundles (i):

Let M be a complex algebraic manifold and let (X,w) be the
cotangent bundle of M equipped with the standard symplectic
form. This symplectic structure is uniquely characterized by the
following

Properties:

e The natural projection m: X — M is a smooth Lagrangian
fibration.

e For any locally defined one form « on M we have
thw = w + 7*(da).

Twisted cotangent bundles are symplectic structures that are
modeled on this geometry.
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Twisted cotangent bundles

Twisted cotangent bundles (ii):

Definition: A twisted cotangent bundle over M is specified by
data (my : Y — M,wy), where
ey : Y — Mis a torsor over TV M;
e wy is an algebraic symplectic form on Y, and:
— The projection wy : Y — M is a Lagrangian fibration
for wy.
— For any locally defined one form o on M we have
trwy = wy + 7y (da).

The TV M-torsor structure is superfluous. It is uniquely
determined from 7wy and wy. Indeed, the infinitesimal action of a
local one form « is given by the vector field ©! (7} ).
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Twisted cotangent bundles

Twisted cotangent bundles (iii):

Let C* = [CO LA Cl] be a complex of sheaves of C-vector

spaces on M concentrated in degrees 0 and 1. Then a torsor over
C* is a pair (A, t), where Aisa C%torsor and t: A— Clisa
trivialization of the associated C!-torsor d(A). Concretely t is a
map of sheaves satisfying t(a + c¢) = t(a) + d(c) for all a € A,

ce CO
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Twisted cotangent bundles

Twisted cotangent bundles (iii):

Let C* = [CO LA Cl] be a complex of sheaves of C-vector
spaces on M concentrated in degrees 0 and 1. Then a torsor over
C* is a pair (A, t), where Aisa C%torsor and t: A— Clisa
trivialization of the associated C!-torsor d(A).

Lemma: [Beilinson-Berstein] There is a canonical equivalence of
groupoids

(twisted cotangent

21111
bundles over M ) A (QM [1]-torsors )
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Twisted cotangent bundles

Twisted cotangent bundles (iv):

The equivalence of groupoids is described as follows:

— Given a twisted cotangent bundle (7y : Y — M,wy) we
define a Q,\Zﬂl[l]—torsor (A, c), where A is the sheaf of sections

of ty,and c: A — Q%}d is given by c(a) = a*wy.

<— Conversely, given a Q,\Z/,l[l]—torsor (A, c), define a twistwd
cotangent bundle (my : Y — M,wy) by taking 7y : Y — M
to be the total space of the Q%,,—torsor A, and wy to be the
unique form such that for every local section o of 7y, the
associated isomorphism of TV M-torsors £, : Y — TV M

satisfies £ (w + 7*(c(0))) = wy.
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