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Outline

based on joint works with D.Calaque, L.Katzarkov, B.Toën,
G.Vezzosi, M.Vaquié

shifted symplectic geometry

derived Darboux theorems

applications
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Symplectic structures

Recall: For X a smooth scheme/C is a symplectic structure is

an ω ∈ H0(X ,Ω2,cl
X ) such that its adjoint ω♭ : TX → Ω1

X is a sheaf
isomorphism.

Note: Does not work for X singular (or stacky or derived):

TX and Ω1
X are too crude as invariants and get promoted to

complexes TX and LX . Details

A form being closed is not just a condition but rather an extra
structure. Details

Tony Pantev University of Pennsylvania
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Definition: X derived Artin stack locally of finite presentation (so
that LX is perfect).

A n-shifted 2-form ω : OX → LX ∧ LX [n] - i.e.
ω ∈ π0(A

2(X ; n)) - is nondegenerate if its adjoint
ω♭ : TX → LX [n] is an isomorphism (in Dqcoh(X )).

The space of n-shifted symplectic forms Sympl(X ; n) on X/C
is the subspace of A2,cl(X ; n) of closed 2-forms whose
underlying 2-forms are nondegenerate i.e. we have a homotopy
cartesian diagram of spaces

Sympl(X , n) //

��

A2,cl (X , n)

��
A2(X , n)nd // A2(X , n)

Tony Pantev University of Pennsylvania
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Shifted symplectic structures: examples (i)

Nondegeneracy: a duality between the stacky (positive degrees) and
the derived (negative degrees) parts of LX .

G = GLn  BG has a canonical 2-shifted symplectic form whose
underlying 2-shifted 2-form is

k → (LBG ∧ LBG )[2] ≃ (g∨[−1] ∧ g
∨[−1])[2] = Sym2

g
∨

given by the dual of the trace map (A,B) 7→ tr(AB).

Same as above (with a choice of G -invariant symm bil form on g)
for G reductive over k .

The n-shifted cotangent bundle T∨X [n] := SpecX (Sym(TX [−n]))
has a canonical n-shifted symplectic form.

Tony Pantev University of Pennsylvania
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Shifted symplectic structures: examples (ii)

Theorem: [PTVV] Let F be a derived Artin stack and let ω ∈
Symp(F , n). Suppose X is O-compact and equipped with an
O-orientation [X ] : H(X ,OX ) −→ C[−d ] of dimension d . If the
derived mapping stack MAP(X ,F ) is a derived Artin stack locally
of finite presentation over C, then, MAP(X ,F ) carries a canonical
(n − d)-shifted symplectic structure.

Remark:
0) Analog to Alexandrov-Kontsevich-Schwarz-Zaboronsky result.

1) A d -dimensional O-orientation on X is a variant of a
Calabi-Yau structure of dimension d ;

2) A compact oriented topological d -manifold has an
O-orientation of dimension d (Poincaré duality).

Tony Pantev University of Pennsylvania
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Lagrangian structures

Let (Y , ω) be a n-shifted symplectic derived stack. A lagrangian
structure on a map f : X → Y is a

path γ in A2,cl(X ; n) from f ∗ω to 0 (isotropic structure),

which is non-degenerate, i.e. the induced map
θγ : Tf → LX [n − 1] is an equivalence.

Examples:

usual smooth lagrangians L →֒ (Y , ω) where (Y , ω) is a
smooth (0)-symplectic scheme.

there is a bijection between lagrangian structures on the
canonical map X → (SpecC, ωn+1) and n-shifted symplectic
structures on X (thus lagrangian structures generalize shifted
symplectic structures)

Tony Pantev University of Pennsylvania

Shifted symplectic structures



Outline Shifted symplectic geometry Local Models Some applications Odds and ends

Shifted symplectic structures: examples (iii)

Theorem: [PTVV] Let (F , ω) be n-shifted symplectic derived
Artin stack, and Li → F a map of derived stacks equipped with a
Lagrangian structure, i = 1, 2. Then the homotopy fiber product
L1 ×F L2 is canonically a (n − 1)-shifted derived Artin stack.

In particular, if F = Y is a smooth symplectic Deligne-Mumford
stack (e.g. a smooth symplectic variety), and Li →֒ Y is a smooth
closed lagrangian substack, i = 1, 2, then the derived intersection
L1 ×F L2 is canonically (−1)-shifted symplectic.

Tony Pantev University of Pennsylvania
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Remark: An important special case is the derived critical locus
RCrit(f ) for f a global function on a smooth symplectic
Deligne-Mumford stack Y . Here

RCrit(f ) //

��

Y

df

��
Y

0
// T∨Y

Tony Pantev University of Pennsylvania
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Local models (i)

Recall: In classical symplectic geometry the local structure of a
symplectic manifold is described by the Darboux theorem:

Tony Pantev University of Pennsylvania
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Local models (i)

Recall: In classical symplectic geometry the local structure of a
symplectic manifold is described by the Darboux theorem: a
symplectic structure is locally (in the C∞ or analytic setting) or
formally (in the algebraic setting) isomorphic to the standard
symplectic structure on a cotangent bundle.

Tony Pantev University of Pennsylvania
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Local models (i)

In the derived and stacky setting there are two natural incarnations
of an n-shifted symplectic cotangent bundle:

(a) The shifted cotangent bundle
T∨
M [n] = RSpec/M

(
Sym•

OM
(TM [−n])

)
, equipped with n-th

shift of the standard symplectic form;

(b) The derived critical locus Rcrit(w) of an n + 1 shifted
function w : M → A

1[n + 1], equipped with the inherited
n-shifted symplectic form ωRcrit(w).

Note: (a) is a special case of (b) corresponding to the zero
shifted function.

Tony Pantev University of Pennsylvania
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Local models (ii)

Remark: • Shifted cotangent bundles are too restrictive to serve
as local models of shifted symplectic structures.

• Derived critical loci of shifted functions have enough flexibility
to provide local models. This leads to a remarkable shifted version
of the Darboux theorem:

Tony Pantev University of Pennsylvania
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Local models (ii)

Theorem: [BBBJ’2013] Let X be a derived Deligne-Mumford
stack, and let ω be an n-shifted symplectic structure on X , with
n < 0.
Then, étale locally (X , ω) is isomorphic to

(
Rcrit(w), ωRcrit(w)

)
for

some shifted function w : M → A
1[n+ 1] on a derived scheme M.

O.Ben-Bassat, C.Brav, V.Bussi,
D.Joyce

Tony Pantev University of Pennsylvania
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Local models (ii)

Theorem: [BBBJ’2013] Let X be a derived Deligne-Mumford
stack, and let ω be an n-shifted symplectic structure on X , with
n < 0.
Then, étale locally (X , ω) is isomorphic to

(
Rcrit(w), ωRcrit(w)

)
for

some shifted function w : M → A
1[n+ 1] on a derived scheme M.

Question: Find additional geometric structures that will ensure a
global existence of a potential?

Tony Pantev University of Pennsylvania
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Local models (iii)

Answer: Potentials always exist in the presence of isotropic
foliations.

Tony Pantev University of Pennsylvania
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Local models (iii)

Theorem: Let X be a derived stack, locally of f.p. and let ω be
an n-shifted symplectic structure on X . Assume:

• ω is exact, i.e. [ω] = 0 ∈ H•
DR(X );

• (X , ω) is equipped with an isotropic foliation
(L , h) = (L,α, ǫ; h).

Then there exists
• a shifted function f : [X/L ] → A

1[n + 1], and
• a symplectic map s : X → Rcrit(f ) of n-shifted symplectic

stacks, i.e. s∗ωRcrit(f ) = ω.
Moreover, if (L , h) is Lagrangian, then s is étale.

Tony Pantev University of Pennsylvania
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Local models (iv)

Note: This connects directly to the [BBBJ’2013] Darboux
theorem because of the following result:

Theorem: Let X be a derived stack, locally of f.p. and let ω be
any n-shifted closed p-form on X with n < 0. Then ω is exact, i.e.
[ω] = 0 ∈ H•

DR(X ) = H
•
(
A0,cl(X )

)
.

Note: [ω] ∈ Hp+n
DR (X ) and in general Hp+n

DR (X ) 6= 0. So the
statement is not a triviality.

Tony Pantev University of Pennsylvania
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Examples

Examples (i)

(1) Derived critical loci. Let Z be a smooth scheme,
w : Z → A

1 a regular function. Consider X = Rcrit(w) with its
inherited (−1)-shifted symplectic structure ωRcrit(w). Let
ı : X → Z be the natural map, and let Lı =

(
LX/Z , res, dDR

)
be

the associted tangential foliation. Then:

Claim: • The foliation Lı has a natural Lagrangian
structure h.

• The quotient [X/Lı] = Ẑcrit(w) is the formal completion of Z
along crit(w) = t0(X ).

• The potential f : Ẑcrit(w) → A
1 associated with h is given by

f = w
|Ẑcrit(w)

.

Tony Pantev University of Pennsylvania
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Examples

Examples (ii)

Variant: If Z ∈ dStC is a derived stack locally of finite type,
w : Z → A

1[n] is an n-shifted function, and X = Rcrit(w)
ı
→ Z ,

then

Claim: • The foliation Lı has a natural Lagrangian structure
h.

• The quotient [X/Lı] = X̂ı is the relative completion of X
along ı.

• The potential f : Ẑcrit(w) → A
1[n] associated with h is given

by f = w
|X̂ı

.

Tony Pantev University of Pennsylvania
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Examples

Examples (iii)

(2) Cotangent bundles. If M is a smooth manifold, and
• X = T∨M,
• ω = (the standard symplectic structure).

Then: The natural projection π : X → M gives rise to a
tangential foliation Lπ = (Lπ, res, dDR) which is Lagrangian.

In this case:
• [X/Lπ] = (X/M)DR ,
• f = 0 viewed as a 1-shifted function,

and we get an identification Rcrit(f ) = T∨
M [1− 1] = X together

with the natural 0-shifted symplectic forms.

Tony Pantev University of Pennsylvania
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Examples

Examples (iv)

(3) Twisted cotangent bundles. Suppose M is a smooth
manifold over C and

η ∈ H
1
(
M,Ω≥1

M [1]
)
= H

2
(
M,Ω1

M

d
→ Ω2,cl

M

)
.

Such η gives rise to an algebraic symplectic manifold - the
twisted cotangent bundle (πη : Xη → M, ωη).

Note:

The tangential foliation Lπη is Lagrangian.

If ωη is exact, then (Xη, ωη) will be symplectically isomorphic
to Rcrit(f ) for a 1-shifted function f on[
Xη/Lπη

]
= (Xη/M)DR .

Tony Pantev University of Pennsylvania
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Examples

Examples (v)

We are looking for a shifted function f : (Xη/M)
DR

→ A
1[1], or

equivalently for an element
f ∈ H

1 (M,H•
DR(X/M)) = H1 (M,OM).

By construction [ωη] = 0 ∈ H2
DR(Xη) if and only if η is in the

image of the map d : H1 (M,OM) → H1
(
M,Ω≥1

M [1]
)
.

Therefore ωη is exact precisely when we can find f ∈ H1 (M,OM)
such that η = df . This f is the shifted function provided by the
theorem, i.e.

(Xη, ωη) ∼=
(
Rcrit(f ), ωRcrit(f )

)
.

Note: Note that as in the classical case f is only unique up to a
class in H1(M,C), i.e. up to a (locally) constant 1-shifted function
on (Xη/M)

DR
.

Tony Pantev University of Pennsylvania
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Examples

Examples (vi)

(4) Integrable systems. Let (X , ω) be an exact symplectic
manifold, and let

h : X → B
be a smooth completely integrable system structure on X .
Again the tangential foliation Lh is Lagrangian and
[X/Lh] = (X/B)DR and by the theorem we can find

f : (X/B)DR → A
1[1]

such that (X , ω) =
(
Rcrit(f ), ωRcrit(f )

)
.

Tony Pantev University of Pennsylvania
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Examples

Examples (vii)

Now note that

MapdStC
(
(X/B)DR ,A

1[1]
)

H1 (B ,H•
DR(X/B))
∪

H0
(
B , h∗Ω

1
X/B

)

If λ ∈ H0
(
X ,Ω1

X

)
is such that ω = dλ, then λ maps to a relative

1-form λrel ∈ H0
(
X ,Ω1

X/B

)
= H0

(
B , h∗Ω

1
X/B

)
. One now

checks that f = λrel .

Note: The full form λ also plays a role in the picture. It defines
the map s : X → Rcrit(f ).

Tony Pantev University of Pennsylvania
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Examples

Examples (viii)

Indeed, if A is a reduced C-algebra, then (X/B)DR(A) = X (A),
i.e. ((X/B)DR)red = X . In particular f|((X/B)DR )red = 0 as it is

the image of f = λrel ∈ H0
(
B , h∗Ω

1
X/B

)
⊂ H1 (B ,H•

DR(X/B)) in

H1(X ,O).
Therefore Rcrit(f )(A) = Rcrit(0)(A) = T∨X (A) i.e.
Rcrit(f )red = T∨X .
Since X itself is reduced, the map s : X → Rcrit(f ) will factor as

X //

s

33
Rcrit(f )red

�

� // Rcrit(f )

and it can be checked that the map X → T∨X coincides with the
section λ.

Tony Pantev University of Pennsylvania
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Constructions

Higher Chern-Simons functionals (i)

Let M be a compact oriented C∞ manifold of dimension
d = 2k + 1. Choose a Morse-Smale function µ : M → R.

a self-indexing Morse function, i.e.
for every x ∈ crit(µ) we have
µ(x) = indµ(x).

Tony Pantev University of Pennsylvania
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Constructions

Higher Chern-Simons functionals (i)

Let M be a compact oriented C∞ manifold of dimension
d = 2k + 1. Choose a Morse-Smale function µ : M → R.
Choose c ∈ (k , k + 1), and let M+ := µ−1 ((−∞, c]). Then

M+ is a manifold with boundary;

the inclusion M+ →֒ M induces a homotopy equivalence
between M+ and the k-dimensional skeleton of M.

Fix a complex reductive group G , and let
BunG (M) = MapdStC(M,BG ) be the derived moduli stack of
G -local systems on M. By [PTVV] BunG (M) carries a natural
2− d -shifted symplectic structure ω, and so if k ≥ 1, it follows
that ω is exact.

Tony Pantev University of Pennsylvania
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Constructions

Higher Chern-Simons functionals (ii)

Theorem: [KPTVV] The tangential foliation for the restriction
morphism

res+ : BunG (M) → BunG (M
+)

can be equipped with a natural isotropic structure h which depends
only on the orientation data of M and the shifted symplectic form
on BG .

Hence we can find a shifted function

f :
(
BunG (M)

/
BunG (M

+)
)
DR

→ A
1[2− 2k]

and a symplectic map

s : (BunG (M), ω) →
(
Rcrit(f ), ωRcrit(f )

)
.

Tony Pantev University of Pennsylvania
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Constructions

Potentials in non-abelian Hodge theory (i)

Let M be a smooth projective variety with dimCM = d and
consider the derived stack of rank n local systems on M:

X := Locn(M) = MapdStC (M,BGLn) .

From [PTVV] we know that X is equipped with a natural
(2− 2d)-shifted symplectic structure ωX . This symplectic
structure comes with natural refinements:

TX has a natural Hodge filtration.

(X , ωX ) is the general fiber of a C
× twisted symplectic family(

X , ωX /A1

)
→ A

1 of moduli of λ-connections, and on
tangent complexes this gives the standard Hodge filtration.

Tony Pantev University of Pennsylvania
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Constructions

Potentials in non-abelian Hodge theory (ii)

This implies

Claim: The natural map ΘωX
: TX → LX [2 − 2d ] given by ωX is

a filtered quasi-isomorphism for the Hodge filtrations.

As a consequence in the middle degree one gets:

Theorem: When d = 2k + 1, the natural map

F k+1
TX → TX

admits a canonical structure of a Lagrangian foliation. In particular
(X , ωX ) (and the corresponding Higgs moduli) are identified with
the critical locus of a shifted potential.

Tony Pantev University of Pennsylvania
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Constructions

Potentials in non-abelian Hodge theory (iii)

Remarks:

(1) The foliation F k+1
TX → TX is the tangential foliation for the

map res≤k+1 : X → Loc≤k
n (M).

derived moduli stack of dg mod-

ules over
(
Ω≤k
M , d

)
which are lo-

cally free of rank n

Tony Pantev University of Pennsylvania
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Constructions

Potentials in non-abelian Hodge theory (iii)

Remarks:

(1) The foliation F k+1
TX → TX is the tangential foliation for the

map res≤k+1 : X → Loc≤k
n (M).

(2) If k = 0, then Loc≤0
n (M) = Bunn(M) and the map

res≤0 : X → Bunn(M) is a twisted cotangent bundle.

(3) If k ≥ 1, then the map induces an isomorphism of truncations
t≥−kLocn(M) → t≥−kLoc

≤k
n (M).

(4) The full untruncated stack X = Locn(M) is recovered as a
critical locus of a shifted function on(
Locn(M)

/
Loc≤k

n (M)
)
DR

which cna be checked again comes

from an element f ∈ H2−2k
(
Loc≤k

n (M),O
)
.

Tony Pantev University of Pennsylvania
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Reduced obstruction theories

DT invariants of abelian 3-folds (i)

A - a 3 dimensional complex abelian variety;
M - a component of the moduli stack of coherent sheaves on A.

Note: Such M’s have a symmetric perfect obstruction theory
(which can be refined to a (−1)-shifted symplectic structure) but
the associated Donaldson-Thomas invariants often vanish (due to
deformation invariance).

Tony Pantev University of Pennsylvania
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Reduced obstruction theories

DT invariants of abelian 3-folds (ii)

[BOPY’2015]: To get meaningful counts modify the obstruction
theory by removing two dual pieces in the tangent complex: the
piece controlling the obstructions to deforming the Chern classses
to Hodge classes, and the piece controlling the deformations
coming from the translation action of A.

Tony Pantev University of Pennsylvania
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Reduced obstruction theories

DT invariants of abelian 3-folds (ii)

[BOPY’2015]: To get meaningful counts modify the obstruction
theory by removing two dual pieces in the tangent complex: the
piece controlling the obstructions to deforming the Chern classses
to Hodge classes, and the piece controlling the deformations
coming from the translation action of A.

J. Bryan, G. Oberdieck,
R. Pandharipande, Q. Yin

Tony Pantev University of Pennsylvania
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Reduced obstruction theories

DT invariants of abelian 3-folds (ii)

[BOPY’2015]: To get meaningful counts modify the obstruction
theory by removing two dual pieces in the tangent complex: the
piece controlling the obstructions to deforming the Chern classses
to Hodge classes, and the piece controlling the deformations
coming from the translation action of A.

[BOPY’2015]: The procedure results in a reduced symmetric
obstruction theory on [M/A] and gives rise to new reduced DT
invariants of A, computed in terms of Jacobi forms.

Tony Pantev University of Pennsylvania
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Reduced obstruction theories

DT invariants of abelian 3-folds (iii)

Interpretation: The reduced obstruction theory comes from a
(-1)-shifted symplectic structure which is a symplectic reduction of
the standard (-1)-shifted symplectic structure on the stack of
perfect complexes.

Tony Pantev University of Pennsylvania
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Reduced obstruction theories

DT invariants of abelian 3-folds (iii)

Interpretation: The reduced obstruction theory comes from a
(-1)-shifted symplectic structure which is a symplectic reduction of
the standard (-1)-shifted symplectic structure on the stack of
perfect complexes.

M = t0(X ) where X is the corresponding component of
MAP(A,Perf) and X . X comes equipped with a (−1) shifted
symplectic structure ω. The [BOPY’2015] theorem can be
repackaged in the following statements:

Tony Pantev University of Pennsylvania
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Reduced obstruction theories

DT invariants of abelian 3-folds (iv)

The A-action on (X , ω) is Hamiltonian and has an
A-equivariant moment map µ : X → a

∨[−1].

µ is equal to zero on the truncation M = t0X , and so
Rµ−1(0) is M with a different derived structure in which the
three dimensional space of obstructions is killed.

The reduced symmetric obstruction theory on [M/A] is the
symmetric obstruction theory corresponding to the
(−1)-shifted symplectic structure on [Rµ−1(0)/A] coming
from the symplectic reduction.

Tony Pantev University of Pennsylvania
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Reduced obstruction theories

DT invariants of abelian 3-folds (iv)

The A-action on (X , ω) is Hamiltonian and has an
A-equivariant moment map µ : X → a

∨[−1].

µ is equal to zero on the truncation M = t0X , and so
Rµ−1(0) is M with a different derived structure in which the
three dimensional space of obstructions is killed.

The reduced symmetric obstruction theory on [M/A] is the
symmetric obstruction theory corresponding to the
(−1)-shifted symplectic structure on [Rµ−1(0)/A] coming
from the symplectic reduction.

Note: Explicitly [Rµ−1(0)/A] is the derived intersection of two
Lagrangians in [a∨[−1]/A] = T∨

BA: the zero section and
µ : [X/A] → [a∨[−1]/A].

Tony Pantev University of Pennsylvania
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Reduced obstruction theories

Note: The same construction is expected to work for the classical
reduced obstruction theory on a K3 surface S : it should be the
symplectic reduction of the (−1) shifted symplectic structure on
the stack of perfect complexes on S × E symplectically reduced by
the action of the elliptic curve E .

Tony Pantev University of Pennsylvania
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Shifted differential operators

Azumaya property of quantizations (i)

X - a smooth scheme over a perfect field k of characteristic p > 0.
S = T∨

X [n] - the n-shifted cotangent bundle of X .
A - the shifted quantization of OS .

Conjecture: [Hablicsek,Haugseng, . . . ] Consider the Frobenius
twist S ′ of S and the zero section i : X ′ → S ′. Then the algebra
A can be regarded as an En+1-algebra over OS ′ so that:
[Weak Morita equivalence:] The (∞, n+ 1)-category of coherent
i∗A -modules is equivalent to the (∞, n+1)-category of coherent
OS ′-modules (OS ′ is viewed as an En+1-algebra).
[Weak Azumaya property:] Étale locally over X , the (∞, n + 1)-
category of coherent A -modules is equivalent to the (∞, n+ 1)-
category of coherent OS ′-modules.
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Shifted differential operators

Azumaya property of quantizations (ii)

Consider S = T∨
X [1]. In this case A has an explicit model - the

crystalline Hochschild cosimplicial complex.

Remark: [Hablicsek] The pullback i∗A is the OX ′-linear
Hochschild cosimplicial complex of polydifferential operators
DiffOX ′

(O•
X ,OX ) which is not Morita equivalent to OX ′ .

Nevertheless we have

Theorem: [Hablicsek] If we view OX ′ as an E2 algebra, then the
category of coherent OX ′-modules is equivalenct to the full thick
subcategory of coherent DiffOX ′

(O•
X ,OX )-modules generated by

OX .
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Tangent complexes

Tangent complex

X ∈ dStC, x : Spec(C) → X a point

(
Stalk TX ,x of the
tangent complex

)
=



normalized chain complex
of the homotopy fiber of
X (C[ε]) → X (C) over x




simplicial abelian group
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Tangent complexes

Tangent complex

X ∈ dStC, x : Spec(C) → X a point

(
Stalk TX ,x of the
tangent complex

)
=



normalized chain complex
of the homotopy fiber of
X (C[ε]) → X (C) over x




When X is a moduli stack:

H−1(TX ,x) = infinitesimal automorphisms of x ;

H0(TX ,x) = infinitesimal deformations of x ;

H1(TX ,x) ⊇ obstructions of x .
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Tangent complexes

Examples

X = BG = [pt /G ]⇒ TX ,pt = g[1].

X = derived intersection L1 ×
h
M L2 = (L1 ∩ L2,OL1 ⊗

L
OM

OL2)
of smooth subvarieties L1, L2 ⊂ M in a smooth M ⇒
TX ,x = [TL1,x ⊕ TL2,x → TM,x ],

H0(TX ,x) = TL1∩L2,x ;
H1(TX ,x) = failure of transversality.

X = moduli of vector bundles E on a smooth projective Y ⇒
TX ,E = RΓ(Y ,End(E ))[1].

X = moduli of maps f from C to Y ⇒ TX ,f = RΓ(C , f ∗TY ).

X = moduli of local systems E on a compact manifold Y ⇒
TX ,E = RΓ(Y ,End(E))[1].
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Tangent complexes

Cotangent complex
A ∈ cdgaC, X = RSpec(A) ∈ dStC,
A′ → A a cofibrant (semifree) replacement

(
cotangent complex
LX = LA

)
=

(
Kähler differentials
Ω1
A′ of A′

)

If X ∈ dStC is a general derived Artin stack, then
X = hocolim{RSpecA → X} (in the model category dStC) and

LX = holimRSpecA→X LA
Note:

LX ∈ Lqcoh(X ) - the dg category of quasi-coherent OX

modules.

X is locally of finite presentation iff LX is perfect. In this case
TX = L

∨
X = Hom(LX ,OX ).

Back
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Forms and closed forms

p-forms

A ∈ cdgaC, X = RSpec(A) ∈ dStC,
A′ → A a cofibrant (semifree) replacement. Then:

⊕p≥0 ∧
p
A LA = ⊕p≥0Ω

p
A′ - a fourth quadrant bicomplex with

vertical differential d : Ωp,i
A′ → Ωp,i+1

A′ induced by dA′ , and

horizontal differential dDR : Ωp,i
A′ → Ωp+1,i

A′ given by the de Rham
differential.

Hodge filtration: F q(A) := ⊕p>qΩ
p
A′ : still a fourth quadrant

bicomplex.
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Forms and closed forms

(shifted) closed p-forms

Motivation: If X is a smooth scheme/C, then Ωp,cl
X

∼=
(
Ω≥p
X , d

)
.

Use (Ω≥p
X , d) as a model for closed p forms in general.

Definition:

complex of closed p-forms on X = RSpecA:
Ap,cl(A) := tot

∏
(F p(A))[p]

complex of n-shifted closed p-forms on X = RSpecA:
Ap,cl(A; n) := tot

∏
(F p(A))[n + p]

Hodge tower:
· · · → Ap,cl(A)[−p] → Ap−1,cl(A)[1− p] → · · · → A0,cl(A)
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Forms and closed forms

(shifted) closed p-forms (ii)

Explicitly an n-shifted closed p-form ω on X = RSpecA is an
infinite collection

ω = {ωi}i≥0 , ωi ∈ Ωp+i ,n−i
A

satisfying
dDRωi = −dωi+1.

Note: The collection {ωi}i≥1 is the key closing ω.
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Forms and closed forms

p-forms and closed p-forms

Note:

The complex A0,cl(A) of closed 0-forms on X = RSpec A is
exactly Illusie’s derived de Rham complex of A.

There is an underlying p-form map

Ap,cl(A; n) → ∧p
LA/k [n]

inducing
H0(Ap,cl (A)[n]) → Hn(X ,∧p

LA/k).

The homotopy fiber of the underlying p-form map can be very
complicated (complex of keys): being closed is not a property
but rather a list of coherent data.
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Forms and closed forms

Functoriality and gluing:

the n-shifted p-forms ∞-functor
Ap(−; n) : cdgaC → SSets : A 7→ |Ωp

QA[n] ≃ (∧p
ALA)[n] |

the n-shifted closed p-forms ∞-functor
Ap,cl(−; n) : cdgaC → SSets : A 7→ |Ap,cl(A)[n] |

Ap(−; n) and Ap,cl(−; n) are derived stacks for the étale
topology.

underlying p-form map (of derived stacks)

Ap,cl(−; n) → Ap(−; n)

Notation: | − | denotes MapC−dgMod (C,−) i.e. Dold-Kan applied
to the ≤ 0-truncation [dg-modules have cohomological differential]
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Forms and closed forms

global forms and closed forms

For a derived Artin stack X (locally of finite presentation /C) we
have

Definition:

Ap(X ) := MapdStC(X ,Ap(−)) is the space of p-forms on X ;

Ap,cl(X ) := MapdStC(X ,Ap,cl(−)) is the space of closed
p-forms on X ;

the corresponding n-shifted versions :
Ap(X ; n) := MapdStC(X ,Ap(−; n))
Ap,cl(X ; n) := MapdStC(X ,Ap,cl(−; n))

an n-shifted (resp. closed) p-form on X is an element in
π0A

p(X ; n) (resp. in π0A
p,cl(X ; n))
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Forms and closed forms

global forms and closed forms (ii)
Note:

If X is a smooth scheme there are no negatively shifted forms.

If X = RSpec A then there are no positively shifted forms.

For a general X shifted forms potentially exist for any n ∈ Z.

Back
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Forms and closed forms

global forms and closed forms (ii)
Consider the underlying p-form map (of simplicial sets):

Ap,cl(X ; n) → Ap(X ; n),

then:

This map is not a monomorphism for general X , its homotopy
fiber at a given p-form ω0 is the space of keys of ω0.

If X is a smooth and proper scheme then this map is a mono
(homotopy fiber is either empty or contractible) ⇒ no new
phenomena in this case.

Theorem (PTVV): For X derived Artin,
Ap(X ; n) ≃ MapLqcoh(X )(OX , (∧

p
LX )[n]) (smooth descent)

in particular a n-shifted p-form on X is an element in
Hn(X ,∧p

LX )

Back
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Examples

Examples (i):

(1) If X = Spec(A) is an usual (underived) smooth affine scheme,
then

Ap,cl(X ; n) = (τ≤n( Ω
p
A

dDR // Ωp+1
A

dDR // · · ·

0 1

))[n],

and hence

π0A
p,cl(X ; n) =





0, n < 0

Ωp,cl
A , n = 0

Hn+p
DR (X ), n > 0

e.g. if X = C
×, then dz/z ∈ π0A

1,cl(X ; 0) and also
dz/z ∈ π0A

0,cl(X ; 1).
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Examples

Examples (ii):

(2) If X is a smooth and proper scheme, then
πiA

p,cl(X ; n) = F pHn+p−i
DR (X ).

(3) If X is a (underived) higher Artin stack, and X• → X is a
smooth affine simplicial groupoid presenting X , then
π0A

p(X ; n) = Hn(Ωp(X•), δ) with δ = Čech differential.
In particular if G is a complex reductive group, then

π0A
p(BG ; n) =

{
0, n 6= p

(Sym•
g
∨)G , n = p.
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Examples

Examples (iii):

(4) Similarly

Ap,cl(BG ; n) =

∣∣∣∣∣∣

∏

i≥0

(
Symp+i

g
∨
)G

[n + p − 2i ]

∣∣∣∣∣∣
,

and so

π0A
p,cl(BG ; n) =

{
0, if n is odd

(Symp
g
∨)G , if n is even.
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Examples

Examples (iv):
(5) If X = Rzero(s) for s ∈ H0(L,E ) on a smooth L, then

Ω1
X = E∨

|Z

(∇s)♭ // Ω1
L|Z ,

−1 0

and if we choose ∇ local flat algebraic connection on E we can
rewrite Ω1

X as a module over the Koszul complex:

· · · // ∧2E∨ ⊗ Ω1
L

s♭ // E∨ ⊗ Ω1
L

s♭ // Ω1
L

// Ω1
L|Z 0

· · · // ∧2E∨ ⊗ E∨ s♭ //

OO

E∨ ⊗ E∨ s♭ //

OO

E∨ //

[∇,s♭]

OO

E∨
|Z

(∇s)♭

OO

−1

Tony Pantev University of Pennsylvania

Shifted symplectic structures



Outline Shifted symplectic geometry Local Models Some applications Odds and ends

Examples

Examples (v):
In the same way we can describe Ω2

X as a module over the Koszul
complex

· · · // ∧2E∨ ⊗ Ω2
L

// E∨ ⊗ Ω2
L

// Ω2
L

// Ω2
L|Z 0

· · · // ∧2E∨ ⊗ E∨ ⊗ Ω1
L

//

OO

E∨ ⊗ E∨ ⊗ Ω1
L

//

OO

E∨ ⊗ Ω1
L

//

OO

(E∨ ⊗ Ω1
L)|Z

OO

−1

· · · // ∧2E∨ ⊗ S2E∨ //

OO

E∨ ⊗ S2E∨ //

OO

S2E∨ //

OO

S2E∨|Z

OO

−2
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Examples

Examples (v):
In the same way we can describe Ω2

X as a module over the Koszul
complex

· · · // ∧2E∨ ⊗ Ω2
L

// E∨ ⊗ Ω2
L

// Ω2
L

// Ω2
L|Z 0

· · · // ∧2E∨ ⊗ E∨ ⊗ Ω1
L

//

OO

E∨ ⊗ E∨ ⊗ Ω1
L

//

OO

E∨ ⊗ Ω1
L

//

OO

(E∨ ⊗ Ω1
L)|Z

OO

−1

· · · // ∧2E∨ ⊗ S2E∨ //

OO

E∨ ⊗ S2E∨ //

OO

S2E∨ //

OO

S2E∨|Z

OO

−2

2 forms of degree −1
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Examples

Examples (v):
In the same way we can describe Ω2

X as a module over the Koszul
complex

· · · // ∧2E∨ ⊗ Ω2
L

// E∨ ⊗ Ω2
L

// Ω2
L

// Ω2
L|Z 0

· · · // ∧2E∨ ⊗ E∨ ⊗ Ω1
L

//

OO

E∨ ⊗ E∨ ⊗ Ω1
L

//

OO

E∨ ⊗ Ω1
L

//

OO

(E∨ ⊗ Ω1
L)|Z

OO

−1

· · · // ∧2E∨ ⊗ S2E∨ //

OO

E∨ ⊗ S2E∨ //

OO

S2E∨ //

OO

S2E∨|Z

OO

−2

Note: The de Rham differnetial dDR : Ω1
X → Ω2

X is the sum
dDR = ∇+ κ, where κ is the Koszul contraction

κ : ∧aE∨ ⊗ SbE∨ → ∧a−1E∨ ⊗ Sb+1E∨.
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Examples

Examples (vi):
Important Remark: [Behrend] If E = Ω1

L and so s is a 1-form,
then a 2-form of degree −1 corresponds to a pair of elements

α ∈ (Ω1
L)

∨ ⊗Ω2
L and φ ∈ (Ω1

L)
∨ ⊗Ω1

L such that [∇, s♭](φ) = s♭(α).

Take φ = id ∈ (Ω1
L)

∨ ⊗ Ω1
L. Suppose the local ∇ is chosen so that

∇(id) = 0 (i.e. ∇ is torsion free). Then [∇, s♭](id) = ds.

Conclusion: The pair (α, id) gives a 2-form of degree −1 iff
ds = s♭(α), or equivalently ds|Z = 0, i.e. is an almost closed
1-form on L.

Exercise: Suppose s is almost closed and let (α, id) be an
associated 2-form of degree −1. Describe the complex of keys for
(α, id) if it exists.
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Twisted cotangent bundles

Twisted cotangent bundles (i):

Let M be a complex algebraic manifold and let (X , ω) be the
cotangent bundle of M equipped with the standard symplectic
form. This symplectic structure is uniquely characterized by the
following

Properties:
• The natural projection π : X → M is a smooth Lagrangian

fibration.
• For any locally defined one form α on M we have

t∗αω = ω + π∗(dα).

Twisted cotangent bundles are symplectic structures that are
modeled on this geometry.
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Twisted cotangent bundles

Twisted cotangent bundles (ii):

Definition: A twisted cotangent bundle over M is specified by
data (πY : Y → M, ωY ), where

• πY : Y → M is a torsor over T∨M;
• ωY is an algebraic symplectic form on Y , and:

− The projection πY : Y → M is a Lagrangian fibration
for ωY .

− For any locally defined one form α on M we have
t∗αωY = ωY + π∗

Y (dα).

Note: The T∨M-torsor structure is superfluous. It is uniquely
determined from πY and ωY . Indeed, the infinitesimal action of a
local one form α is given by the vector field Θ−1

ωY
(π∗

Yα).
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Twisted cotangent bundles

Twisted cotangent bundles (iii):

Recall: Let C • =
[
C 0 d

→ C 1
]
be a complex of sheaves of C-vector

spaces on M concentrated in degrees 0 and 1. Then a torsor over
C • is a pair (A, t), where A is a C 0-torsor and t : A → C 1 is a
trivialization of the associated C 1-torsor d(A). Concretely t is a
map of sheaves satisfying t(a + c) = t(a) + d(c) for all a ∈ A,
c ∈ C 0.
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Twisted cotangent bundles

Twisted cotangent bundles (iii):

Recall: Let C • =
[
C 0 d

→ C 1
]
be a complex of sheaves of C-vector

spaces on M concentrated in degrees 0 and 1. Then a torsor over
C • is a pair (A, t), where A is a C 0-torsor and t : A → C 1 is a
trivialization of the associated C 1-torsor d(A).

Lemma: [Beilinson-Berstein] There is a canonical equivalence of
groupoids

(
twisted cotangent
bundles over M

)
↔

(
Ω≥1
M [1]-torsors

)
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Twisted cotangent bundles

Twisted cotangent bundles (iv):

The equivalence of groupoids is described as follows:

→ Given a twisted cotangent bundle (πY : Y → M, ωY ) we
define a Ω≥1

M [1]-torsor (A, c), where A is the sheaf of sections

of πY , and c : A → Ω2,cl
Y is given by c(a) = a∗ωY .

← Conversely, given a Ω≥1
M [1]-torsor (A, c), define a twistwd

cotangent bundle (πY : Y → M, ωY ) by taking πY : Y → M
to be the total space of the Ω1

M-torsor A, and ωY to be the
unique form such that for every local section σ of πY , the
associated isomorphism of T∨M-torsors fσ : Y → T∨M
satisfies f ∗σ (ω + π∗(c(σ))) = ωY . Back
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