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INFINITY CATEGORIES AND WHY THEY ARE USEFUL, I

CARLOS SIMPSON

1. Motivation

The basic motivation is that we start with a Grothendieck site X. We know it is
useful to think about sheaves on X, i.e. a functor Xop → Set satisfying a descent
property.

It turns out that it is also desirable to look at “sheaves of spaces”, i.e. functors
Xop → Spaces that satisfy a descent property. The theory of such objects was
constructed by Jardine, using ideas of Joyal. To manipulate these objects, we need
some kind of theory of ∞-categories.

Similar problems had arisen previously, for example people wanted to consider
sheaves valued in the derived category. In such contexts much progress was made
without ∞-categories, although the apparatus of ∞-categories is useful.

2. Localization of categories

What’s the basic phenomenon? The slogan is: “localization (of categories) creates
homotopies”.

Start with a category C, and choose a subset of maps W in C. One wants to make
a category W−1C by “adjoining inverses” to the maps in W .

Example 2.1. Consider a category with objects X,Y, Z and u, v : X → Y and
f : Y → Z such that fu = fv. If we “invert” f , then we force u = v.

Suppose there’s another object W and g : Y → W such that gu = gv, then if
we invert g this also forces u = v. But now we’ve asked u = v in two different
ways. This creates an “S1 in the space of maps”. This could arise in “real life” in the
following way.

You might have a fibered category F → C such that f∗ : FZ
∼−→ FY and g∗ : FW

∼−→
FY . This will induce 2 natural isomorphism between the functors

u∗ : FY
∼−→ FX

v∗ : FY
∼−→ FX

which we denote ψf : u
∗ ∼−→ v∗ and ψg : u

∗ ∼−→ v∗. Combining them gives an auto-
morphism ψ−1

g ◦ ψf : u
∗ ∼−→ u∗. This is the “loop around the S1”.

Then F , viewed as a functor from C, factors through the localization W−1C. The
loop discussed earlier is a non-trivial 2-morphism in W−1C.
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In the world of ∞-categories, there is a localization operation C,W 7→ W−1C.
Even if C is an ordinary category, the localization W−1C will be an ∞-categories
with homotopy in arbitrary degrees.

How does this relate to the localization we might be familiar with (e.g. derived cat-
egories), in which we don’t deal with this? There is a truncation from ∞-categories
to 1-categories. The usual localization is the composition of the∞-categorical local-
ization with this truncation, so it discards the higher homotopical information.

Example 2.2. For 2-categories, this operation crushes the category of maps between
objects to its set of isomorphism classes.

The localization W−1C was constructed by Dwyer-Kan, in fact in two ways: a
general way, and the “hammock way”.

3. Simplicial categories

First of all, what is it? It’s a simplicial category. One can think of simplicial
categories as a model for ∞-categories. This means that it has a “set” (or maybe
“Grothendieck universe”) of objects, and for all objects x, y there is a simplicial set
A∗(x, y) of maps between x and y. (Morally we are imagining a space of maps, but
it’s technically better to use simplicial sets as a model for spaces.) Furthermore,
there is a composition

A∗(x, y)×A∗(y, z)→ A∗(x, z).

Recall that
|A∗(x, y)| × |A∗(y, z)| = |A∗(x, y)×A∗(x, z)|.

The point of the degeneracies is to make this true! Hence we get a map of spaces

|A∗(x, y)×A∗(y, z)| → |A∗(x, z)|.

Example 3.1. Let W be the weak equivalences in sSets. Let S =W−1sSets. Then
S∗(X,Y ) is a simplicial set representing maps from X to Y , i.e.

|S∗(X,Y )| ∼ Map(|X|, |Y |).


