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STABLE BIRATIONAL INVARIANTS

CLAIRE VOISIN

1. Unramified cohomology

Let X/C be smooth. We have f : Xan → XZar and we defined Hi(A) = Rif∗A,

H i
nr(X;A) := H0(XZar,Hi(A)).

We would like to explain why this is a birational invariant.
We recall the Gersten-Quillen resolution of Hi(A). For all W irreducible and

reduced, define
H`(C(W );A) := lim−→

U⊂W
H`

B(U ;A).

This is a constant sheaf on W . If W contains a divisor D, we have a residue map

H i(C(W );A)→ H i−1(C(D);A)

(The definition is slightly tricky.)
The Gersten-Quillen resolution is

0→ Hi(A)→ H i(C(X);A)→
⊕

codim(D)=1

H i−1(C(D);A)→ . . .→
⊕

codim(Z)=i

H0(C(Z);A)→ 0.

(1.1)
Why is it a complex? It basically amounts to saying taking residues in one order is
negative of the residues in the other order.

Theorem 1.1 (Bloch-Ogus). This is an acyclic resolution of Hi(A).

This is a deep and difficult fact.
We have a spectral sequence Ep,q

2 = Hp(XZar;Hq(A)) converging to the analytic
cohomology. The Bloch-Ogus theorem shows that

E0,i
2 = H i

nr(X;A) = ker

(
H i(C(X);A)

res−−→
⊕
D

H i−1(D;A)

)
. (1.2)

Corollary 1.2. For U ⊂ X, H i
nr(X;A) → H i

nr(U ;A) is injective and an isomor-
phism if the codimension of X − U has codimension at least 2.

Proof. Neither term in (1.2) changes. �

This implies the birational invariance of H i
nr(X;A), for smooth projective X.

Other corollaries:
(1) Ep,q

2 = 0 for p > q.
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2 CLAIRE VOISIN

(2) The Bloch-Ogus formula.

Theorem 1.3 (Bloch-Ogus). CHk(X)/alg.eq ∼= Hk(XZar;Hk(Z)).

Proof. Use the resolution (1.1). We’re looking at the last term, which is a
direct sum over cycles of codimension k of H0(C(Z);Z), modulo the sum
over cycles W of codimension k−1 of H1(C(W );Z). This is the same as the
relation of algebraic equivalence. �

We have a filtration Ep,q
∞ onH∗B(X;Z) with p+q = 2k, p ≤ q. In particular

Ek,k
∞ is the sub. We just found Ek,k

2 in terms of the Chow group. Since the
differentials leaving Ek,k

2 are all 0, we have Ek,k
2 � Ek,k

∞ ⊂ H2k
B (X;Z); this

is the cycle class map.

2. Chow decomposition of the diagonal

Let X be a smooth variety of dimension n over an algebraically closed k. Choose
x ∈ X a point of degree 1.

Definition 2.1. We say that X has a Chow decomposition of the diagonal if

∆X = X × x+ Z ∈ CHn(X ×X) (2.1)

where Z =
∑
niZi is such that pr1 : Zi → X does not dominate.

Equivalently, there exist a proper closed D ⊂ X such that Zi is supported D×X.

Consider the action of correspondences P ∈ CHn(X×X), which induces P∗ : CHk(X)→
CHk(X) by

P∗(z) = pr2∗(pr
∗
1P ∩ z)

with adjoint
P ∗(z) = pr1∗(pr

∗
2P ∩ z).

Lemma 2.2. If X has a decomposition of the diagonal, then CH∗(X) = Zx.

Proof. Consider the action of (2.1): we get

z = (deg z)x+ 0.

�

Over C there is a sort of converse, due to Bloch-Srinivas.

Theorem 2.3 (Bloch-Srinivas). CH0(X) = Z implies (2.1) after tensoring with Q.

Lemma 2.4. If X has a Chow decomposition of the diagonal, then for all L ⊃ k
then CH0(XL) = ZxL.

Proof. Just take a base change of the decomposition and apply the same argument.
�

Definition 2.5. X has universally trivial CH0 if it has the property that for all
L ⊃ k then CH0(XL) = ZxL.
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Proposition 2.6 (Auel-Colliot-Thélène-Parimala). X has a Chow decomposition of
the diagonal if and only if X has universally trivial CH0-group.

Proof. Assume CH0(XL) = ZxL for all L ⊃ K. Consider L = K(X). By hypothesis,
the generic point ηL ∈ XL(L) is identified with xL in CH0(XL). You then spread this
out, viewing L as the colimit of functions over Zariski open subsets of X. From this
you deduce that there exists U ⊂ X such that ∆(X)|U×X = U × x ∈ CHn(U ×X).
Using the localization exact sequence, this gives a decomposition of the diagonal. �

Proposition 2.7 (V.). If X has a decomposition of the diagonal modulo algebraic
equivalence, then it has a Chow decomposition of the diagonal.

3. Cohomological decomposition of the diagonal

Definition 3.1. We say that X has a cohomological decomposition of the diagonal
if

[∆X ] = [X × x] + [Z] ∈ H2n
B (X ×X) (3.1)

where [Z] =
∑
ni[Zi] with the property that pr1 : Zi → X does not dominate.

Equivalently, there exist a proper closed D ⊂ X such that Zi is supported D×X.

If you have a Chow decomposition, you get a cohomological one by taking the
cycle class.

Remark 3.2. Having a Chow decomposition of the diagonal is a stably birationally
invariant property for X smooth projective.

Proof. Use that Pr has a Chow decomposition of the diagonal, because

∆Pr =
∑

pr∗1h
i · pr∗2hr−i

for h the hyperplane class.
Take 0 ∈ Pr. First restrict ∆X×Pr to X × 0 × X × Pr, and then project to

∆X ⊂ X × X. Applying this to a decomposition of ∆X×Pr gives a decomposition
of ∆X×Pr .

Then we do the birational invariance. Suppose X is birational to Y . Resolve by
X ′ mapping to both. We have (ϕ,ϕ)∗∆X′ = ∆X and (ϕ,ϕ)∗∆X agrees with ∆X′

on the open subset where ϕ is injective, hence agrees up to something on the locus
where ϕ is not an isomorphism. �

Theorem 3.3. (1) If X has a cohomological decomposition of the diagonal, then
H3

B(X;Z) = 0 and Z4(X) = 0.
(2) If X has a Chow decomposition of the diagonal, then H i

nr(X;A) = 0 for all
i > 0.

(3) If X in positive characteristic has a Chow decomposition of the diagonal,
Totaro has shown that H0(Ωk

X/K) = 0.

Proof. (1) [∆X ] = [X × x] + [Z] where [Z] is supported on D ×X. We let D̃ → D

be the desingularization in such a way that Z lifts to Z̃ ∈ CHn−1(D̃ × X). Let
j : D̃ → X be the composition.
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We can thus write
[∆X ] = [X × x] + (j, Id)∗[Z̃].

Hence for all α ∈ H`
B(X;Z) we will get

α = [X × x]∗α︸ ︷︷ ︸
=0 if `>0

+j∗([Z̃]∗α)

and [Z̃]∗α factors through H`−2
B (D̃;Z).

If α ∈ H3
B(X;Z)tors then α = j∗([Z̃]∗α) = 0.

If α ∈ Hdg4(X;Z) then α = j∗([Z̃]∗α) which factors through Hdg2(D̃;Z), and is
algebraic.

For (2) and (3), the argument is similar but using a different cycle class – the Bloch-
Ogus cycle class for (2), and for case (3) the de Rham cycle class of a correspondence.

�


