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STABLE BIRATIONAL INVARIANTS

CLAIRE VOISIN

1. Decomposition of the diagonal under degenerations

There are (unirational) smooth projective varieties which don’t have a Chow de-
composition of the diagonal, e.g. the Artin-Mumford double solid X̃f0 has the prop-
erty thatH3

B(X̃f0 ;Z)tors 6= 0 hence X̃f0 does not have a cohomological decomposition
of the diagonal, and is therefore not stably rational.

We now examine the stability of these properties under degeneration.

Theorem 1.1 (Voisin ’14). Let X → B be a projective flat morphism with fiber
dimension ≥ 2. Assume the generic fiber is smooth and has a Chow decomposition
of the diagonal. If the fiber X0 has ordinary double points then X̃0 (the desingular-
ization) has a Chow decomposition of the diagonal.

Theorem 1.2. Under the same setup, assume that the generic fiber Xt has a cohomo-
logical decomposition of the diagonal. Assume further that H2∗

B (X̃0;Z) is algebraic.
Then X̃0 (the desingularization) has a cohomological decomposition of the diagonal.

Proof. After making a base change, we assume that there is a section (xt).
For very general t, there exists Dt ⊂ Xt and Zt supported on Dt ×Xt such that

∆t = Xt × xt + Zt ∈ CHn(Xt ×Xt). (1.1)

Perhaps after another base change, this data can be put in a family D ⊂ X , and
Z supported in D ×B X , with the relation (1.1) satisfied for very general t. By the
closedness of the locus where a cycle is rationally equivalent to 0, it is satisfied for
all t.

We conclude that for all t ∈ B,

∆(Xt) = Xt × xt + Zt ∈ CHn(Xt ×Xt)

even at t = 0. Then specializing to t = 0, we have that Z0 is supported on D0×X0,
and gives a decomposition of the diagonal there. Now, X0 has a set of ordinary
double points x1, . . . , xn. Consider the desingularization X̃0 obtained by blowing
up these double points. The exceptional divisors are smooth quadrics Qi. We have
X̃0 \

⋃
Qi ∼= X0 − {x1, . . . , xn} =: U .

So
∆X̃0
|U×U = (X̃0 × x0 + Z0)|U×U = 0 ∈ CHn(U × U).
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2 CLAIRE VOISIN

We then get by the localization exact sequence

∆X̃0
= X̃0 × x0 + Z̃0

where Z̃0 is supported in D0 × X̃0 modulo cycles supported in the complement of
U × U , i.e.

⋃
Qi × X̃0

⋃
X̃0 ×Qi. We can write this as

∆X̃0
= X̃0 × x0 + Z̃0 + Γ1 + Γ2

with Γ1 ∈ CHn(
⋃
Qi × X̃0) and Γ2 ∈ CHn(X̃0 ×

⋃
Qi).

Now the key point is that the Qi are quadrics, so we understand their Chow groups
and the Chow groups of their products with other stuff. In particular, CHn(X̃0×Qi)
is generated by product cycles∑

j

Wj ×W ′j , Wj ∈ CH∗(X̃0),CH∗(Qi).

It is then easy to conclude the proof. �

In conclusion, what we really used about quadratic singularities is that they gave
rise to quadrics, and the Chow group of a product with a quadric is simple. This
is because a quadric is rational. In fact, it would be enough in the case of iso-
lated singularities that the exceptional divisors admit a decomposition of the diago-
nal. Colliot-Thélène and Pirutka described the general condition by saying that the
desingularization map is CH0-universally trivial.

Corollary 1.3. The desingularization of a very general quartic double solid with ≤ 7
nodes has no cohomological (or Chow) decomposition of the diagonal, hence it is not
stably rational.

Proof. Suppose the quartic double solid is Xf := V (y2 = f). By the general theory
of nodal K3 surfaces, such anXf specializes to the Artin-MumfordXf0 . Furthermore
H4
B(X̃f0 ,Z) is algebraic, so we can apply Theorem 1.2. �

However, X̃f has H3
B(X̃f ;Z)tors = 0, so we lose the Artin-Mumford obstruction,

and also Z4(X̃f ) = 0 [Voisin]. Together with the following Lemma, we got the
vanishing of all the unramified groups for X̃f .

Lemma 1.4. H i
nr(X;A) = 0 for i > dimX.

Proof. H i
nr(X;A) = H0(XZar,Hi(A)) where Hi(A) is the sheaf associated to the

presheaf U 7→ U iB(U ;A), which vanishes on affine U if i > dimU . �

2. Abel-Jacobi map for codimension 2 cycles algebraically
equivalent to 0

Let X/C be smooth. If H3,0(X) = 0, we have the intermediate Jacobian

J3(X) =
H1,2(X)

H3
B(X;Z)

.
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The Hodge decomposition implies that this is a abelian variety, although there is no
canonical polarization in general.

We have the Abel-Jacobi map

ϕX : CH2(X)hom → J3(X)

by writing Z = ∂β for a 3-cycle β (possibly by the homological triviality of Z), and
sending Z to ∫

B
∈ Hn−1,n−2(X)∗ ∼= H1,2(X).

The β is defined up to adding T with ∂T = 0, so everything is defined modulo
integrals over such cycles.

Theorem 2.1 (Bloch). If CH0(X) = Z, then ϕX : CH2(X)hom ∼= J3(X).

This is slightly weird because the right side is an algebraic variety while the left is
not (at least, a priori). So what to impose on the map? We ask that it be a “regular
homomorphism”, meaning for all B smooth and algebraic, and all ζ ∈ CH2(B ×X),
the map

Φζ : B → J3(X)

sending b 7→ ΦX(ζb) is algebraic on B.
Question: does there exist a universal codimension 2 cycle on J3(X) ×X? By

this we mean ζuniv ∈ CH2(J3(X) × X) such that Φζuniv
: J3(X) → J3(X) is the

identity.

Example 2.2. In the codimension 1 case, J1(X) = Pic0(X) and there is such a
universal cycle, namely the Poincaré divisor.

Proposition 2.3. If X has a cohomological decomposition of the diagonal, then X
admits a universal codimension 2 cycle.

Proof. We can write

[∆X ] = [X × x] + (j, IdX)∗[Z̃] ∈ H2n
B (X ×X;Z)

for some j : D̃ → X. Hence for all α ∈ H3
B(X;Z) we get

α = j∗(Z̃
∗α)

which is compatible with the various Abel-Jacobi homomorphisms

CH2(X)hom CH1(D̃)hom CH2(X)hom

J3(X) J1(D̃) J3(X)

Z̃∗

ϕX

j∗

ϕ
D̃ ϕX

[Z̃]∗ j∗

and j∗ ◦ [Z̃]∗ = IdJ3(X).
We have a universal cycle D̃univ on J1(D̃)× D̃. We then take

(IdJ(X), j)∗([Z̃]∗, Id
D̃

)∗D̃univ

to be the desired cycle on J3(X).
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�

3. 3-folds

Suppose X is a 3-fold with h1,0 = h3,0 = 0. Then J3(X) is a principally polarized
abelian variety. The polarization comes from the pairing on H3

B(X;Z).
Clemens-Griffiths showed that if X is rational, then (J3(X), θ) =

⊕
J(Ci) where

Ci are curves.

Proposition 3.1. If X has a cohomological decomposition of the diagonal, then
the minimal class θg−1/(g − 1)! ∈ H2g−2

B (J3(X);Z) is algebraic on J3(X), where
2g = b3(X).

Theorem 3.2. Suppose X is rationally connected 3-fold. Then X has a decomposi-
tion of the diagonal if and only if the following conditions are satisfied.
(i) H∗B(X;Z) has no torsion.
(ii) X has a universal codimension 2 cycle.
(iii) θg−1

(g−1)! is algebraic on J3(X).

Example 3.3. Let X be a very general designularized quartic double solid with 7
nodes. Then X has no universal codimension 2 cycle. Why? We know that it has
no decomposition of the diagonal. It is torsion-free, and the Jacobian has dimension
3, so it is necessarily the Jacobian of a curve, so (iii) is satisfied. So it must be (ii)
that is not satisfied.


