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THH AND TC: CLASSICAL TO MODERN

KATHRYN HESS

1. Motivation and overview

This will be be a leadup from a classical perspective on topological Hochschild
homology and cyclic homology to the recent work of Nikolaus-Scholze.

The ultimate goal is to compute algebraic K-theory: K(R).
Why would we want to do this? For one thing, it contains a lot of important

number-theoretic information. Furthermore, if R comes from geometry, e.g the group
ring of π1, then it encodes important geometric information as well.

But there is a big problem: it is really hard to compute! So we need tools to help
us do this.

The method of attack that I’m going to describe is the following:

• We will construct and (hopefully) compute various approximations to alge-
braic K-theory, and
• determine how good these approximations are.

Notation: T will denote the circle group S1.

2. Classical approximations

Let A be a flat Z-algebra (perhaps simplicial, or differential graded...).

2.1. Hochschild homology. We will look at a certain simplicial construction to
build a simplicial abelian group HH∗(A) ∈ sAb, with HHn(A) = A⊗(n+1). The face
maps

di : HHn(A)→ HHn−1(A)

is given by

a0 ⊗ . . .⊗ an 7→

{
a0 ⊗ . . .⊗ aiai+1 ⊗ . . .⊗ an 0 ≤ i ≤ n
ana0 ⊗ a1 ⊗ . . . an−i i = n

.

Evidently there is an action of Cn+1 on HHn(A). These cyclic actions realize to an
action of T on |HH∗(A)|. This leads to other invariants, including cyclic homology.
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2.2. Cyclic homology. We define

HC(A) := HH(A)hT.

We will later see an explicit and nice chain model for this.
We also have negative cyclic homology

HC−(A) := HH(A)hT.

2.3. Goodwillie’s Theorem. Anyway, we have these various invariants. But how
good are they as approximations to algebraic K-theory?

Theorem 2.1 (Goodwillie ’86). There is a natural map

tr : K∗(A)→ HC−∗ (A)

for all simplicial rings A such that for all f : A→ B which induce surjections on π0
with nilpotent kernel,

K∗(A)⊗Q HC−(A⊗Q)

K∗(B)⊗Q HC−(B ⊗Q)

This means intuitively that the “difference” between K∗(A)⊗Q and K∗(B)⊗Q
is the same as the “difference” between HC−(A ⊗ Q) and HC−(B ⊗ Q). To make
this precise, one finds

K∗f ⊗Q ∼= HC−∗ (f ⊗Q).

Terminology: the composition K∗(A)
tr−→ HC−∗ (A)→ HH∗(A) is called the Dennis

trace.

Remark 2.2. You can think of theK-theory as some sort of higher version of the de-
terminant. Under that analogy, what we’re trying to do is understand determinants
via traces.

Question: can we generalize Goodwillie’s result to the non-Q case?
Answer: yes, but we’ll need to enter the world of “Brave New Algebra”. The

slogan is that we replace ordinary commutative algebra over Z by “commutative
ring spectra over the sphere spectrum S”.

3. Brave new algebra approximations

Let A be an associate ring spectrum. We’ll discuss spectra more later; for now
we just say that a spectrum is a sequence of spaces Xn, with maps ΣXn → Xn+1.
It has a symmetric monoidal structure X ∧ Y , which you can think of as “tensor
product over the sphere spectrum”.
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3.1. Topological Hochschild homology. Let A be an associative ring spectrum.
The idea is to make a simplicial object in spectra THH∗(A), which will look like

. . . A ∧A⇒ A

We have action of various cyclic groups levelwise, and when we take the geometric
realization of THH∗(A) they will induce an action of T-action on the spectrum
|THH∗(A)|.

Remark 3.1. There are some technical issues. The construction A  THH(A)
is not going to be homotopy invariant unless we restrict to cofibrant A, for one
thing. To get something homotopy invariant, we should replace A by an equivalent
construction due to Bökstedt.

Bökstedt’s model for THH(A) has the property that THH(A)Cpn is also homo-
topically meaningful (i.e. homotopy invariant in A).

3.2. Brave new cyclic homology. It turns out that THH(A) is a T-spectrum
(informally, a spectrum with an action of T) together with “Frobenius maps”. In
other words, THH(A) is a “cyclotomic spectrum”. This is used to construct the Brave
New version of HC. (One doesn’t just take homotopy fixed points or homotopy orbits
– the cyclotomic structure is really used in a deep way.)

Brave New cyclic homology [Bökstedt-Hsian-Madsen ’93]
• There is an inclusion of fixed points, which induces

THH(A)Cpn
F−→ THH(A)Cpn−1

(this is related to F on Witt vectors)
• Cyclotomic structure induces

THH(A)Cpn
R−→ THH(A)Cpn−1

These F and R maps commute.
We’ll use this to build something which is related to THH, but a better approxi-

mation to K-theory.

Definition 3.2. Fix a prime p. Set TR(A; p) := holim←−−−Rn THH(A)Cpn . Then we
define the “p-typical topological cyclic homology”

TC(A; p) = holim←−−−

(
TR(A; p)

Id
⇒
F

TR(A; p)

)
.

We can enhance this by “putting all the primes together”. Let P be the set of all
primes. Define

TC(A) THH(A)hT

∏
p∈P TC(A; p)∧p

(∏
p∈P THH(A)∧p

)hT
where THH(A)∧p denotes the “p-completion of THH(A)”.
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Recall that the whole point of this was to get a non-rational version of Goodwillie’s
result. This will work out, with HC− replaced by TC.

Theorem 3.3 (Dundas-Goodwillie-McCarthy ’13). “The difference between K and
TC is locally constant.” More precisely, there exist natural trace maps

K(A)
trc−→ TC(A)→ THH(A)

(trc is the “cyclotomic trace” and the composition is called the “Dennis trace”) such
that for all morphisms of ring spectra f : A→ B with π0(f) a surjection with nilpo-
tent kernel, the diagram

K(A) TC(A)

K(B) TC(B)

trc

trc

is homotopy cartesian.

4. ∞-categorical innovations

First of all, why ∞-categories (as opposed to model categories)? There are situa-
tions that cannot be expressed cleanly, or at all, in the world of model categories. For
example, Nikolaus-Scholze significantly cleaned up the theory of cyclotomic spectra
using this formalism.

[Blumberg-Gepner-Tabuada ’13]
• Connective algebraicK-theory is the “universal additive invariant”. (By addi-
tive, we mean it inverts Morita equivalences, preserves filtered colimits, and
sends split exact sequences to cofiber sequences.) The universal property
means that any additive invariant receives a map from algebraic K-theory.
This is useful for producing maps out of K-theory.
• Nonconnective algebraicK-theory is the “universal localizing invariant” (mean-
ing it is additiev and sends all exact sequences to cofiber sequences). It turns
out that THH,TC are also localizing, so the universal property gives trace
maps K → TC and K → THH.

What is [Nikolaus-Scholze ’13] about?
• They provide an elegant ∞-categorical approach to cyclotomic spectra. It
is much simpler and cleaner than the usual approach. This leads to a very
clean description of TC.
• They give a “straightforward” construction of THH(A) as a cyclotomic spec-
trum in their sense (although it is combinatorially challenging in the case
where A is merely associative).

5. A few computations

The Nikolaus-Scholze approach makes it easier to do some computations of THH
and TC that were otherwise out of reach. This is explained in [Hesselholt-Nikolaus]
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5.1. Bökstedt periodicity. There is a Bökstedt spectral sequence

H∗(π∗A) =⇒ π∗(THH(A)).

Using the Bökstedt spectral sequence, one can compute

THH∗(HFp) ∼= SymFp
(THH2(Fp))

and dimFp THH2(Fp) = 1.
Bhatt-Morrow-Scholze have generalized Bökstedt periodicity to perfectoid rings.

Using this one can actually reprove Bott periodicity, in the formKtop
∗ (C) ∼= SymZ(Ktop

2 (C)).
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