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BIRATIONAL ALGEBRAIC GEOMETRY IN POSITIVE
CHARACTERISTIC

KARL SCHWEDE

1. Recap

We begin by recalling a prototypical argument from last time.
Let X be a normal CM variety over a field of characteristic p > 0. Let H ⊂ X

be a reduced Cartier divisor. We have F e
∗ωX → ωX (dual to OX → F e

∗OX). This
induces

0→ ωX → ωX(H)→ ωH → 0.

Let L be an ample line bundle on X. We have an exact sequence

H0(ωX(L)) H0(ωX(H + L)) H0(ωH(L|H)) H1(ωX(L))

but since we are not in characteristic 0, "we don’t know that the map H0(ωX(H +
L))− > H0(ωH(L|H)) is surjective.

However, we have a diagram

H0(ωX(L)) H0(ωX(H + L)) H0(ωH(L|H)) H1(ωX(L))

H0(F e
∗ωX(peL)) H0(F e

∗ωX(H + peL)) H0(F e
∗ωH(peL|H)) H1(F e

∗ωX(peL)) = 0

If X is Frobenius-split, then the map H0(F e
∗ωH(peL|H))→ H0(ωH(L|H)) is surjec-

tive, so we get the desired surjectivity.
If F e

∗ωH → ωH is not surjective, then the sections of H0(ωH(L|H)) not in the
image of H0(F e

∗ωH) cannot be lifted via our argument.
Today we will discuss local obstructions to this surjectivity.

2. Frobenius splitting

First we discuss some non-obvious ways of getting Frobenius splittings.

Theorem 2.1 (Kunz). Let Y be a variety over k = kp. Then Y is regular if and
only if F e

∗OY is locally free for some (equivalently, all) e > 0.

Suppose you have a surjective projection (not necessarily a Frobenius splitting)
F e
∗OY,y � OY,y. There is a map F e

∗OY,y → F e
∗OY,y sending 1 7→ r. Then we have

the map OY,y → F e
∗OY,y sending 1 7→ 1.

Conclusion: any map F e
∗OY,y � OY,y gives a Frobenius splitting.
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3. Frobenius divisor

Definition 3.1. Let R be a normal local ring of characteristic p > 0. Frobenius
is finite. Suppose you have a non-zero map ϕ ∈ Hom(F e

∗R,R) = F e
∗ω

⊗(1−pe)
R =

F e
∗R((1−pe)KR). The map ϕ determines Dϕ ∼ (1−pe)KR. Normalize with respect

to p, e:

∆ϕ :=
1

pe − 1
Dϕ ∼Q −KR

i.e. KR + ∆ϕ ∼Q 0.

Why is ∆ϕ interesting?
(1) To get improved vanishing statements in characteristic 0.
(2) To cook up sections of ωX ⊗ L.
(3) To keep track of canonical divisors are you change varieties.

Example 3.2. If you have a finite surjective map f : Z → Y between normal vari-
eties in characteristic p > 0, and ϕ : F e

∗OY → OY , we have

KZ = f∗KW + ram.

We can rewrite this as

KZ + (f∗∆ϕ − ram)︸ ︷︷ ︸
=:∆Z

= f∗(KY + ∆ϕ)

Assume further that f is generically separable. It turns out that ∆Z corresponds to
the unique extension of ϕ to ϕZ : F e

∗OZ → OZ . (It exists if and only if ∆Z ≥ 0.)
This could be useful to getting a Frobenius splitting.

4. Log-canonical pairs

What if we just have a birational map? Suppose π : Ỹ → Y is a proper birational
map. Then we can write

K
Ỹ

+ ∆
Ỹ

= π∗(KY + ∆ϕ).

Definition 4.1. (Y,∆Y ) is log-canonical if when I write

K
Ỹ

+ ∆
Ỹ

= π∗(KY + ∆Y )

(for any birational map π), the coefficients of ∆
Ỹ
≤ 1.

It turns out that the condition that the coefficients of ∆ϕ ≤ 1 is equivalent to ϕ
being surjective in codimension 1.

Theorem 4.2 (Hara-Watanabe, Smith-Schwede). If R is F -split, then there exists
∆ϕ ≥ 0 such that (R,∆ϕ) is log-canonical.

Corollary 4.3. If (R,∆) is a pair over Q and KR + ∆ is Q-Cartier, with the
property that the pair reduced modulo p is F -pure for infinitely many p, then (R,∆)
is log-canonical.
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5. F -rational rings

Definition 5.1. We say R is F -rational if:
(1) F e

∗ωR → ωR has no stable submodules.
(2) R is Cohen-Macaulay.

Compare to the definition of rationality: R is Cohen-Macaulay and π∗ωỸ
= ωY .

Theorem 5.2 (Smith). F -rational implies rational in characteristic p.

Proof. π∗ωỸ
⊂ ωY is stable under F e

∗ωY → ωY . �

Theorem 5.3 (Hara-Mehta-Srinivas). R has rational singularities in characteristic
0 if and only if R (mod p) has F -rational singularities for a Zariski-dense set of p.

It turns out that we have some ways of checking whether varieties in characteristic
p are F -pure, F -rational, F -split, etc.

Example 5.4. A cone over an F -split variety is F -pure.

Theorem 5.5 (Fedder). Let R = S/I where S = k[x1, . . . , xn]. Then R is F -pure
at a maximal ideal m if and only if I [pe] : I is not contained in m[pe].

Here I [pe] is the ideal generated by peth powers of elements of I and

I : J := {r ∈ R : rJ ⊂ I}

Example 5.6. Consider f = zy2 − x(x− λz)(x+ z), which cuts out a cone over an
elliptic curve. We want to know if fp−1 ∈ (xp, yp, zp)? The issue is the coefficient
of xp−1yp−1zp−1, which is basically the Hasse invariant. So we recover the fact that
the cone over an ordinary elliptic curve is F -pure; recall Example 5.4 and the fact
that ordinary abelian varieties are F -split.


