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Calc II: Integration

A1 ⊂ P1

Hp(x) = max(1, |x|p), x ∈ A1(Qp)

U(0) := {x | |x|p ≤ 1}

U(j) := {x | |x|p = pj}, vol(U(j)) = pj(1− 1

p
)

∫
Qp
H(xp)

−sdxp =
∫
U(0)H(xp)

−sdxp +
∑

j≥1

∫
U(j)H(xp)

−sdxp

= 1 +
∑

j≥1 p
−jsvol(U(j))

= 1−p−s
1−p−(s−1)
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Leading constant

Put s = 2:

∫
. . . = (1 +

1

p
) =

#P1(Fp)
p

We interpret this as a volume with respect to a natural measure.
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Heights

F/Q number field

X = XF projective algebraic variety over F

X(F ) its F -rational points

L = (L, ‖ · ‖) adelically metrized very ample line bundle

HL : X(F )→ R>0 associated height,
depends on the metrization (choice of norms)

Introduction



Tamagawa numbers / Peyre (1995)

Let X be a smooth projective Fano variety over F of dimension d.
Assume that −KX is equipped with an adelic metrization.

For x ∈ X(Fv) choose local analytic coordinates x1, . . . , xd, in a
neighborhood Ux. In Ux, a section of the canonical line bundle has
the form s := dx1 ∧ . . . ∧ dxd. Put

τv = τX,v := ‖s‖vdx1 · · · dxd,

where dx1 · · · dxd is the standard normalized Haar measure on F dv .
It globalizes to X(Fv).

For almost all v, and Zariski open U ⊂ X,∫
U(Fv)

τv =

∫
X(Fv)

τv =

∫
X(ov)

τv =
∑

x̃∈X(Fq)

∫
π−1(x̃)

τv =
X(Fq)
qd

.

Introduction
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Birational Calabi-Yau (Batyrev 1997)

X, Y birational Calabi-Yau of dimension n

A canonical bundle of a Calabi-Yau variety has a canonical
metrization ∫

X(Fv)
τv =

X(Fq)
qn

∀′v

If X ⊃ U ⊂ Y , then

X(Fq)
qn

=

∫
X(Fv)

τv =

∫
U(Fv)

τv =

∫
Y (Fv)

τv =
Y (Fq)
qn

, ∀q

Applications
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Derived equivalent K3 surfaces

Lieblich-Olsson 2011

Let X and Y be derived equivalent K3 surfaces over k = Fq. Then

|X(k)| = |Y (k)|.

Can this be viewed as an identity of p-adic integrals?

Applications
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Igusa integrals: local theory

Let U := X \D, with

D = ∪α∈ADα, −KX =
∑

ραDα,

where Dα are geometrically irreducible, smooth, and intersecting
transversally.

For A ⊂ A let

DA := ∩α∈A, D◦A = DA \ ∪A′⊃ADA′ .

DA ⊂ X is smooth, of codimension #A (or empty).

Applications
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Local heights

Let
Hα : U(Fv)→ R≥0

be the v-adic distance to the boundary component Dα.

Example: U = P1 \ {0,∞},

H0(x) := max(1, |x0|/|x1|), H∞ := max(1, |x1|/|x0|)

Applications



Height integrals

Zv(s) :=

∫
U(Fv)

∏
α∈A

Hα(x)−sαdτv

Applications



Local computations

In charts, via partition of unity: in a neighborhood of x ∈ D◦A(F ) it
takes the form ∫ ∏

α∈A
|xα|sα−ραv dτv

Essentially, this is a product of integrals of the form∫
|x|v≤1

|x|s−1
v dxv.

Applications
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Denef’s formula

For almost all v one has:

Zv(s) =
∑
A

#D◦A(Fq)
qdimX

∏
α∈A

q − 1

qsα−ρα+1 − 1
.

Applications



Applications

The integral

is an invariant under blowups,

encodes information about singularities of X,

plays a central role in analytic/spectral approches to Manin’s
conjectures, volume asymptotics, etc.

Applications



Basic questions

How much arithmetic is encoded in geometry?

How much geometry can be read off from arithmetic?

Rationality problems
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Rationality

(R) rational: if X ∼ Pn for some n,

(S) stably rational: if X × Pn is rational, for some n

(U) unirational: if Pn 99K X, for some n

Rationality problems
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Classical results, over C

dim(X) ≤ 2: all notions of rationality coincide, via MMP

dim(X) = 3: (U) 6⇒ (R)

Iskovskikh-Manin: quartic in P4 via birational rigidity
Clemens-Griffiths: cubic in P4 via intermediate Jacobians

dim(X) = 3: (U) 6⇒ (S)

Artin-Mumford: conic bundles via Brauer groups

dim(X) = 3: (S) 6⇒ (R)

Beauville–Colliot-Thélène–Sansuc–Swinnerton-Dyer: via
universal torsors

Rationality problems
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Specialization of (stable) rationality

Voisin (2013): integral decomposition of ∆ (Bloch-Srinivas)

Colliot-Thélène–Pirutka (2015): universal CH0-triviality

Nicaise–Shinder (2017): K0(V ark)/L, char(k) = 0

Kontsevich–T. (2017): Burn(k), char(k) = 0

Rationality problems
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Specialization of (stable) rationality

Larsen–Lunts (2003): K0(V ark)/L is isomorphic to the free
abelian group spanned by classes of algebraic varieties over k,
modulo stable rationality. Key: Bittner’s presentation of
K0(V ark): smooth proper varieties + blowup relations, and
the Weak Factorization theorem for birational maps.

Nicaise–Shinder (2017): motivic reduction – formula for
homomorphism

K0(V arK)/L→ K0(V ark)/L, K = k((t)),

inspired by motivic integration as in Denef–Loeser, , ...

Kontsevich–T. (2017): Same formula for

Burn(K)→ Burn(k),

the free abelian group spanned by classes of varieties over the
corresponding field, modulo rationality.

Rationality problems



Specialization (Kontsevich-T. 2017)

Let o ' k[[t]], K ' k((t)), char(k) = 0.

Let X/K be a smooth proper (or projective) variety of
dimension n, with function field L = K(X).

Choose a regular model

π : X → Spec(o),

such that π is proper and the special fiber X0 over Spec(k) is a
simple normal crossings (snc) divisor:

X0 = ∪α∈A dαDα, dα ∈ Z≥1.

Put

ρn([L/K]) :=
∑
∅6=A⊆A

(−1)#A−1[DA × A#A−1/k] ∈ Burn(k),

Rationality problems



Equivariant bir. types (Kontsevich-T. 2019)

G - finite abelian group, A = G∨ = Hom(G,Gm)

X - smooth projective variety, with G-action

β : X 7→
∑
α

[Fα, [. . .]], XG = tFα.

Let X̃ → X be a G-equivariant blowup. Consider relations

β(X̃)− β(X) = 0.

Equivariant birational types
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Birational types Bn(G)
Fix an integer n ≥ 2. Consider the Z-module

Bn(G) generated by [a1, . . . , an], ai ∈ A

such that a1, . . . , an generate A, i.e.,
∑

i Zai = A, and

(S) for all σ ∈ Sn, a1, . . . , an ∈ A we have

[aσ(1), . . . , aσ(n)] = [a1, . . . , an],

(B) for all 2 ≤ k ≤ n, all a1, . . . , ak ∈ A, b1, . . . , bn−k ∈ A such that∑
i

Zai +
∑
j

Zbj = A

we have
[a1, . . . , ak, b1, . . . bn−k] =

=
∑

1≤i≤k, ai 6=ai′ ,∀i′<i
[a1 − ai, . . . , ai, . . . , ak − ai, b1, . . . , bn−k]

Equivariant birational types



Modular/motivic types Mn(G)

Fix an integer n ≥ 2. Consider the Z-module

Mn(G) generated by 〈a1, . . . , an〉, ai ∈ A

such that a1, . . . , an generate A, i.e.,
∑

i Zai = A, and

(S) for all σ ∈ Sn, a1, . . . , an ∈ A we have

〈aσ(1), . . . , aσ(n)〉 = 〈a1, . . . , an〉,

(M) for all 2 ≤ k ≤ n, all a1, . . . , ak ∈ A, b1, . . . , bn−k ∈ A such that∑
i

Zai +
∑
j

Zbj = A

we have
〈a1, . . . , ak, b1, . . . bn−k〉 =

=
∑

1≤i≤k
〈a1 − ai, . . . , ai, . . . , ak − ai, b1, . . . , bn−k〉

Equivariant birational types



Birational types

Kontsevich-T. 2019

The class
β(X) ∈ Bn(G)

is a well-defined G-equivariant birational invariant.

Equivariant birational types



Birational types → modular types

Consider the map
µ : Bn(G)→Mn(G)

(µ0) [a1, . . . , an] 7→ 〈a1, . . . , an〉, if all a1, . . . , an 6= 0,

(µ1) [0, a2, . . . , an] 7→ 2〈0, a2, . . . , an〉, if all a2, . . . , an 6= 0,

(µ2) [0, 0, a3, . . . , an] 7→ 0, for all a3, . . . , an,

and extended by Z-linearity.

Equivariant birational types



Birational types → modular types

Kontsevich–T. 2019

µ is a well-defined homomorphism; surjective, modulo 2-torsion.

Conjecture: This is an isomorphism, modulo 2-torsion.

This would follow from:

For any integer N ≥ 2,

[0, 0, 1] ∈ B3(Z/NZ)

is a torsion element of order a power of 2.

Equivariant birational types
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Birational types: B2(Z/pZ)

Assume that
G = Z/pZ ' A.

Then B2(G) is generated by symbols [a1, a2] such that

a1, a2 ∈ Z/pZ, gcd(a1, a2, p) = 1,

and

[a1, a2] = [a2, a1],

[a1, a2] = [a1, a2 − a1] + [a1 − a2, a2], where a1 6= a2,

[a, a] = [a, 0], for all a ∈ Z/pZ, gcd(a, p) = 1.

Equivariant birational types



Modular types: M2(Z/pZ)

Assume that
G = Z/pZ ' A.

Then M2(G) is generated by symbols 〈a1, a2〉 such that

a1, a2 ∈ Z/pZ, gcd(a1, a2, p) = 1,

and

〈a1, a2〉 = 〈a2, a1〉,
〈a1, a2〉 = 〈a1, a2 − a1〉+ 〈a1 − a2, a2〉, for all a1, a2.

The only difference: [a, a] = [a, 0], 〈a, a〉 = 2〈a, 0〉.

Equivariant birational types
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Hecke operators on Mn(G)

The modular groups carry (commuting) Hecke operators:

T`,r :Mn(G)→Mn(G) 1 ≤ r ≤ n− 1

Example:

T2(〈a1, a2〉) = 〈2a2, a2〉+
(
〈a1− a2, 2a2〉+ 〈2a1, a2− a1〉

)
+ 〈a1, 2a2〉.

Equivariant birational types
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Eigenvalues of T2 on M2(Z/59Z)

Equivariant birational types



Birational types

This gives
(
p
2

)
linear equations in the same number of variables.

rkQ(B2(G)) =
p2 + 23

24
=
p2 − 1

24
+ 1

Nontrivial `-torsion, e.g., p = 37 and ` = 3, 19.

For n ≥ 3 the systems of equations are highly overdetermined.

rkQ(B3(G))
?
=

(p− 5)(p− 7)

24
=
p2 − 1

24
+ 1− p− 1

2

Jumps at
p = 43, 59, 67, 83, ...

Equivariant birational types
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Modular symbols

M2(Γ1(N)) is generated by symbols (c, d), c, d ∈ Z/NZ,
gcd(c, d,N) = 1, subject to relations

(c, d) + (d,−c) = 0

(c, d) + (d,−c− d) + (−c− d, c) = 0

dimS2(Γ1(p)) = 1 +
(p− 1)(p+ 1)

24
− (p− 1)

2
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Modular symbols

There is an involution on M2(Γ1(N))

ι : (c, d) 7→ −(−c, d).

The (+)-eigenspace for ι contains the space

M+
2 (Γ1(N))′

spanned by elements of the form

〈c, d〉′ := (c, d)− (−c, d).

M+
2 (Γ1(N))′ 'M2(Z/NZ)
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Computations: B2(Z/NZ)

∆2,`(Z/pZ) := dim(B2(Z/pZ)F`)−
p2 + 23

24

varies; there are frequent jumps for ` | p± 1, e.g.,

∆2,31(Z/61Z),∆2,13(Z/79Z),∆2,11(Z/89Z) = 1
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Computations: B3(Z/NZ)

For p a prime,

∆3,Q(Z/pZ) := dim(B3(Z/pZ)Q)− (p− 5)(p− 7)

24
= 0

for all primes up to 41, but

∆3,Q(Z/pZ) = 1, for p = 43, 59, 79, . . . and ∆3,Q(Z/163Z) = 10.
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dim(B4(G)Q) and 2-torsion jump
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Birational types: summary

Construction of groups related to Bn(G)

Definition of Hecke operators on these groups

Nonabelian versions

Refined G-equivariant birational invariants...

Unexpected connection between the Cremona group and
automorphic forms (cohomology of congruence subgroups)
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Specialization method: First applications

Very general varieties below are not stably rational:

Quartic double solids X → P3 with ≤ 7 double points
(Voisin 2014)

Quartic threefolds (Colliot-Thélène–Pirutka 2014)

Sextic double solids X → P3 (Beauville 2014)

Fano hypersurfaces of high degree (Totaro 2015)

Cyclic covers X → Pn of prime degree
(Colliot-Thélène–Pirutka 2015)

Cyclic covers X → Pn of arbitrary degree (Okada 2016)

Quadric bundles and Fano hypersurfaces of low degree
(Schreieder 2017-18)
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Conic bundles over rational surfaces

Theorem (Hassett–Kresch–T. 2015)

Very general conic bundles over rational surfaces with discriminant
of sufficiently large degree are not stably rational.

Theorem (Kresch–T. 2017)

Same for Brauer-Severi surface bundles.
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Del Pezzo fibrations

Theorem (Hassett-T. 2016)

A very general fibration π : X → P1 in quartic del Pezzo surfaces
which is not rational and not birational to a cubic threefold is not
stably rational.

Theorem (Krylov-Okada 2017)

A very general del Pezzo fibration π : X → P1 of degree 1, 2, or 3
which is not rational and not birational to a cubic threefold is not
stably rational.
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Fano threefolds

Theorem (Hassett-T. 2016)

A very general nonrational Fano threefold X which is not birational
to a cubic threefold is not stably rational.

Idea of proof: Specialize to quartic del Pezzo fibrations over P1.

Conclusion: Stable rationality for very general rationally
connected threefolds (with the exception of cubic threefolds) is
settled, via degeneration to varieties admitting only rational double
points as singularities.

There are no obvious obstructions to stable
rationality before specialization.
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Rationality in families

Let π : X → B be a smooth family of rationally connected varieties
and put

Rat(π) := { b ∈ B | Xb is rational }.

Rat(π) is a countable union of closed subsets of B.

Timmerscheidt (1981), de Fernex–Fusi (2012) in dim = 3,

Kontsevich–T. (2017) in general.
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Rat(π): Hassett-Pirutka-T. (2016)

Rat(π) and its complement can be dense on the base.

Consider (2, 2)-hypersurfaces in P2 × P3, over C. Then

a very general one is not stably rational,

the set of rational ones is dense in moduli.

Idea of proof: via specialization to a quadric surface bundle
degenerating along

Computing H2
nr(X,Z/2): general approach by Pirutka (2016);

Desingularization: by hand;

Rationality: goes back to Hassett’s 1999 treatment of cubic
fourfolds with a plane.
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Further examples

Hassett–Pirutka–T. 2016: Quartic double covers of P4

Hassett–Pirutka–T. 2017: Intersections of three quadrics in P7

Schreieder 2017: general approach to quadric bundles in higher
dimensions
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Fano threefolds over C(t)

Recall that over C, general nonrational (smooth) Fano threefolds,
not birational to a cubic, are not stably rational.

What about geometrically rational Fano threefolds over k = C(t)?

There exist nonrational 3-dimensional tori (15 types, classified by
Kunyavski 1990), thus there exist nonrational singular toric Fano
varieties. All smooth toric Fano threefolds are rational (18 types,
classified by Batyrev 1981).

There exist nonrational forms of M̄0,6 (Florence–Reichstein 2017).
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Fano threefolds over C(t) (Hassett-T. 2018)

Target theorem

Let X be a nontoric geometrically rational smooth Fano threefold,
very general in its family. Then X is not stably rational over k.
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Fano threefolds over C(t) (Hassett–T. 2018)

Our favorite example:

X = Q1 ∩Q2 ⊂ P5.

It is a quadric surface bundle over P1; its model X is birational
to a quadric surface bundle over P1 × P1, with degeneration
along a curve of bi-degree (6,6):

Pirutka’s computation of H2
nr, singularities as before.
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Fano threefolds over C(t) (Hassett–T. 2018)

It also admits a degeneration to a singular toric intersection of
two quadrics, P3 blown up in 4 points:

x0x1 − x2x3 = x2x3 − x4x5 = 0.

This toric threefold admits a nonrational form over k.

Toric degenerations of Fano threefolds have been worked out in
connection with mirror symmetry. Those of interest to us admit (?)
degenerations to singular toric varieties XΣ with symmetries
compatible with nontrivial

H1(Gal,Pic(X̄Σ)).
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