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THE NOTION OF SINGULAR SUPPORT IN DAG AND ITS
APPLICATIONS III

SAM RASKIN

1. Recap

We discussed that for lci X, TX has amplitude in [0, 1].
We defined Sing(X) = SpecXred SymOred

X
(H1(TX |Xred)).

For N ⊂ PSing(X), we defined IndCohN (X) ⊂ IndCoh(X).
The picture to have in mind: for usual quasicoherent sheaves, the support comes

from the action of central elements, namely the functions. Here the central elements
were in degree 2, hence are “infinitesimal”.

Example 1.1. For X = 0×V 0 = Spec Sym(V ∨[1])). There is a Koszul duality

IndCoh(X) ∼= Sym(V [−2])−mod.

Why? We have the object k := ι∗O0 ∈ IndCoh(X) for ι : 0→ X. You can compute
its self-Ext, and find that it’s Sym(V [−2]). The equivalence sends k 7→ Sym(V [−2]).

In this case Sing(X) = V ∨. The singular support of F ∈ Coh is the same as the
support of H∗(KD(F)) under the action of SymV . (In this setup, H∗(KD(F)) will
be a finitely generated graded module.)

2. Drinfeld’s characterization

Let X = Y ×V 0 for Y smooth and V a vector space. Then Sing(X) ⊂ Xred×V ∨.
Then for F ∈ Coh(X), we have (x ∈ X,λ ∈ V ∨ − 0) /∈ ssupp(F) if and only if
ιλ∗F ∈ Perf(Y ′) in a neighborhood of x, where

ιλ : X ↪→ Y ′ := {λ = 0} ⊂ Y.
So the singular support measures the directions in which F is not perfect.

3. Functorial behavior

For f : X → Y a map between lci DG schemes.
We have a diagram

Sing(Y )×Y red Xred Sing(X)

Sing(Y )

δ

π
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(The situation is formally similar to that for cotangent bundles, because we’re using
H−1 instead of H0.)

For NX ⊂ P Sing(X),

f∗(NX) := (πδ−1(N aff
X )− Y )/Gm

This looks overcomplicated because of annoyances of adding and removing the 0
section, but informally you just “pull and push”.

Similarly for NY ⊂ P Sing(Y ), define

f∗(NY ) ⊂ P Sing(X).

Theorem 3.1 (Arinkin-Gaitsgory). For f : X → Y a map between lci DG schemes.
(1) Let NX ⊂ P Sing(X). Then

f IndCoh
∗ : IndCoh(X)→ IndCoh(Y )

maps
IndCohNX

(X)→ IndCohf∗NX
(Y ).

(2) If f is proper and surjective, then the essential image of f IndCoh
∗ (IndCohNX

(X))
generates IndCohf∗NX

(Y ) under colimits.
(3) f ! : IndCoh(Y ) → IndCoh(X) maps IndCohNY

(Y ) to IndCohf∗NY
(X) and

generates if f is an lci morphism and affine.

Remark 3.2. Roughly, f IndCoh
∗ is like pushforward for quasicoherent sheaves.

Example 3.3. (1) f is an lci morphism if and only if δ : Sing(Y )×Y X → Sing(X)
is a closed embedding, which is equivalent to f∗∅ = ∅. In this case, the theorem says
f∗ Perf(X) ⊂ Perf(Y ) if f is proper (this is just to allow us to ignore the question
of what f IndCoh

∗ is). The reason is that f∗ has finite Tor dimension for lci f .
(2) Consider y : X = pt ↪→ Y . Then y∗(∅) = P Sing(Y )y. The theorem says that

y∗(k) has maximal singular support.
(3) f∗(∅) = ∅. The theorem says that f ! always preserves QCoh ⊂ IndCoh always.

This is not a surprise, as lci implies Gorenstein, which implies ωY ∈ QCoh(Y ) ⊂
IndCoh. Furthermore, it is clear that this generates in the affine case.

What’s the use of this stuff? The motivation seems to be that lci singularities are
ubiquitous, and the relevant homological algebra is similarly ubiquitous.

4. Role in Geometric Langlands

Let X be a smooth projective curve over k. Define LocSysn(X) to be the stack
parametrizing {(E ,∇)} where E is a rank n vector bundle on X with connection ∇.

An idea of Beilinson-Drinfeld is that there should be a kind of equivalence between
coherent sheaves on LocSysn(X) and D-modules on Bunn(X).

For n = 1, they proved that on the nose

QCoh(LocSys1(X)) ∼= D(Bun1).
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It was also known that the obvious generalization of this to GL2 could not be
true. The reason is that for LocSys2, the Eisenstein functor

QCoh(LocSys1(X)2)→ QCoh(LocSys2(X))

should preserves compact objects.
Arinkin-Gaitsgory realized that the “correct” LHS of geoemtric Langlands is the

minimal subcategory of IndCoh(LocSys2(X)) generated by QCoh and objects come
from the Eisentein functor. [AG] found that this category can be described by a
singular support condition. Here

Sing(LocSysn) = {(E ,∇) + ϕ : (E ,∇)→ (E ,∇) preserving the connection}.
The condition [AG] found is that ϕ is nilpotent.


