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EXTENDING HOLOMORPHIC FORMS FROM THE REGULAR
LOCUS OF A COMPLEX SPACE TO A RESOLUTION

CHRISTIAN SCHNELL

1. Motivating problem

Theorem 1.1 (Greb-Kebekus-Kovacs-Peternell). Let X be a normal algebraic va-
riety (over C) with KLT singularities. Let r : X̃ → X be a resolution. Then every
algebraic p-form on Xreg extends to an algebraic p-form on X̃.

In fact they show this even locally, in the following sense. Let j : Xreg ↪→ X. Then

r∗Ω
p

X̃
↪→ j∗Ω

p
Xreg

is an isomorphism for all p.
The philosophy of the proof comes from the MMP. You show that there is an

extension with some kind of pole, and then show that actually there are no poles.
We will give a general sufficient and necessary criterion for forms to extend, and

we’ll see that it actually has nothing to do with the MMP.

2. An example

We will discuss the example of cones.
Let X ⊂ AN be the normalization of the cone over a smooth Y ⊂ PN−1. There’s

a resolution r : X̃ → X, such that the fiber over the cone point is Y . This is the
total space of O(−1) over Y .

Let Y be smooth and projective, of dimension n − 1 ≥ 1. Suppose L is ample.
Let X = Spec

⊕∞
m=0H

0(Y ;Lm). We have a resolution r : X̃ → X, where X̃ is the
total space of L−1 over Y , i.e.

X̃ := Spec Y

( ∞⊕
m=0

Lm

)
.

What are the n-forms on X̃? We have ω
X̃

= q∗(ωY ⊗ L) hence

H0(X̃, ω
X̃

) =
∞⊕

m=1

H0(Y, ωY ⊗ Lm).

On the other hand,

H0(Xreg, ωreg) = H0(X̃ − Y, ω
X̃

) =
⊕
m∈Z

H0(ωY ⊗ Lm).
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2 CHRISTIAN SCHNELL

Conclusion: all n-forms extend if and only if H0(Y, ωY ⊗ Lm) = 0 for all m ≤ 0.
One can write down similar conditions for p-forms to extend, p < n, but they turn
out to be dominated by this extension condition for n-forms.

Compare to the KLT condition: X is KLT if and only if Y is Fano, an L ∼Q

a(−KY ) for a > 0. This is much more restrictive.

3. More general setup

Let X be a complex space, reduced of constant dimension n.
Locally, what this means concretely is that we have an open ball B ⊂ Cn+c and

X ⊂ B is defined by some holomorphic equations. Let r : X̃ → X be a resolution,
which (it turns out) we can assume to be projective.

Problem: which holomorphic p-forms on Xreg extend to X̃? Equivalently, de-
scribe r∗Ω

p

X̃
↪→ j∗Ω

p
Xreg

.

Remark 3.1. r∗Ω
p

X̃
is independent of the resolution.

Example 3.2. For p = 0, the question is about holomorphic functions. When do
holomorphic functions extend from Xreg to X̃? Answer: exactly when codimension
Xsing ≥ 2. (r∗OX̃

= functions on normalization.)

Example 3.3. For p = n, if X has rational singularities (in particular r∗OX̃
∼= OX

and Rir∗OX̃
= 0 for i ≥ 1), then r∗ωX̃

∼= ωX by duality, hence ωX is reflex-
ive. This says that all n-forms on Xreg extend to X̃. Fact: this is equivalent to
codimX(supp(Rir∗OX̃

)) ≥ i+ 2 for all i ≥ 1.

The condition of having rational singularities include normal and Cohen-Macaulay.
Asking for n-forms to extend amounted to rational singularities minus the part about
normal and Cohen-Macaulay.

Theorem 3.4 (Kebekus-S). Let B ⊂ Cn+c be a ball, with coordinates z1, z2, . . . , zn+c.
Let X ⊂ B be reduced with constant dimension n. Pick a resolution r : X̃ → X.
(a) (well-known) Let α ∈ H0(Xreg,Ω

n
Xreg

). This extends to X̃ if and only if the
(n, n)-form α∧α is locally integrable. (Compare: a holomorphic function around
a normal crossings divisor extends if and only if it is square-integrable.)

(b) (new) α ∈ H0(Xreg,Ω
p
Xreg

) extends to X̃an if and only if all α∧dzi1 ∧ . . .∧dzin−p

and dα ∧ dzi1 ∧ . . . ∧ dzin−p−1 extend to X̃, for all indices i1, . . . , in−p.

Consequences:
(1) All n-forms extend implies all p-forms extend for all p.
(2) All p-forms extend implies all (p− 1)-forms extend.

Proof. Suppose α is a (p− 1)-form. Then dα and α∧ dzi extend by assump-
tion. Then by (b), α∧dzi1 ∧ . . .∧dzin−p and dα∧dzi1 ∧ . . .∧dzin−p−1 extend.
Using (b) again, α extends. �
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4. Idea of proof

The proof uses Hodge modules and the Decomposition Theorem.
Why do this? Hodge theory is about holomorphic forms. For example, one part

of the theory says that
H0(X,Ωp

X) ⊂ Hp(X;C).

One thing that Hodge modules do is give you this kind of result for morphisms.
Because we want to restrict our attention to non-singular spaces for the purposes

of using D-modules, we call the composition

f : X̃
r−→ X ↪→ B

and want to describe f∗Ω
p

X̃
. The p-forms Ωp

X̃
can be viewed as the result of taking

the naive filtration on the holomorphic de Rham complex

O
X̃

d−→ Ω1
X̃
→ . . .→ Ωp

X̃
→ . . .→ Ωn

X̃
.

Hodge modules on a complex manifold Y are “polarized variations of Hodge struc-
ture with singularities”. The way this is implemented is: consider tuples (M,F∗M,K)
where

• M is a regular holonomic DY -module (perverse sheaf)
• F∗M is a filtration by coherent subsheaves, compatible with differentiation
(including Griffiths transversality).
• K is constructible with Q-coefficients, and K ⊗Q C ∼= DR(M).

Saito imposes a bunch of conditions, and shows that they come from VHS with
singularities in the sense that they are extended over singularities from honest VHS
on a smooth locus, and then pushed forward to the ambient space.

Example 4.1. The constant sheaf as a Hodge Module on Y is (OY , F0OY =
OY ,QY [dimY ]).

Example 4.2. Let X ⊂ Y be singular. The “intersection complex” as a Hodge
Module on Y is

(MX , F∗MX , ICX).

This is not so easy to describe. In practice the way it appears is that you consider
a resolution, push down something simple from there, and take a “main” summand.

Notation: let d = dimY . The de Rham complex of a mixed Hodge module
(M,F∗M,K) is

DR(M) = M → Ω1
Y ⊗M → . . .→ Ωd

Y ⊗M
where the start is in degree −d.

This has a filtration

FkDR(M) = FkM → Ω1
Y ⊗ Fk+1M → . . .→ Fk+dM ⊗ Ωd

Y

These are just C-linear, but the graded pieces are OY -linear

grFkDR(M) = grFkM → Ω1
Y ⊗ grFk+1M → . . .→ Ωd

Y ⊗ grFk+dM
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Theorem 4.3 (BBDG, Saito). The pushforward Rf∗OX̃
[n] breaks into simple pieces:

Rf∗OX̃
[n] ∼= ICX ⊕ (other terms supported on Xsing).

This implies

Rf∗DR(O
X̃

) ∼= DR(MX)⊕ (other terms supported on Xsing).

We’re interested in differential forms, which have to do with the filtration. Cru-
cially, Saito’s version is compatible with the filtration and associated graded.

Rf∗Ω
p

X̃
[n− p] ∼= Rf∗grF−pDR(O

X̃
) ∼= grF−pDR(MX)⊕ R−p︸︷︷︸

supported on Xsing

.

Since we just want p-forms, we take cohomology sheaves in dimension n− p. We
get

f∗Ω
p

X̃
∼= Hp−n(grF−pDR(MX))⊕Hp−n(R−p)

and since the left side is torsion-free on its support, the term Hp−n(R−p) (which is
torsion on this support) must be 0.

One can then translate this statement into the result that everything is governed
by n-forms. This takes a bit of work, but is basically just bookkeeping.


