Moduli spaces of algebraic varieties of general type

János Kollár

Princeton University

May, 2019

Short recap of history — in an innovative format

・ロト < 個ト < 目ト < 目ト < 目 ・ 9 < 0

Started 160 years ago

Long before the talkies appeared.

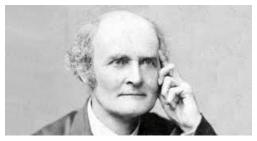
・ロト・4回ト・4回ト・4回ト・4回・9000

Silent lecture

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへの

Riemann (1857) Theorie der Abel'schen Funktionen

- Riemann surfaces as branched covers of \mathbb{CP}^1 ,
- genus g surfaces depend on 3g 3 parameters,
- $H^0(C, L) \ge \deg L + 1 g.$



Cayley (1862)

A new analytic representation of curves in space

- $C \subset \mathbb{P}^3 \mapsto \operatorname{Cayley}(C) \subset \operatorname{Grass}(\mathbb{P}^1, \mathbb{P}^3)$ $\operatorname{Cayley}(C) = \{ \operatorname{lines} L : L \cap C \neq \emptyset \}.$
- (Moduli of space curves) \hookrightarrow (divisors on Grassmannian).
- Now Cayley form is called Chow form.

Hurwitz (1891) Über Riemann'sche Flächen mit gegebenen Verzweigungspunkten

- Hurwitz space: branched covers of \mathbb{CP}^1 ,
- M_g is irreducible over \mathbb{C} .
- Char p: by Deligne-Mumford (1969)

Klein (1897-1912 with Fricke) Vorlesungen über die Theorie der automorphen Funktionen

- Riemann surfaces as quotients of the unit disc in \mathbb{C} ,
- study of discrete subgroups of $PSL_2(\mathbb{R})$.
- M_g exists as a real orbifold.

Severi (1915) Sulla classificazione delle curve algebriche e sul teorema d'esistenza di Riemann

- return to algebraic theory: plane curves with nodes.
- M_g is unirational for $g \leq 10$.

Siegel (1935), Über die analytische Theorie der quadratischen Formen

- A_g: analytic moduli of abelian varieties
- as quotient of the Siegel upper half plane.
- Reads like modern mathematics.

Teichmüller (1944) Veränderliche Riemannsche Flächen

• Teichmüller space T_g : Riemann surfaces

with marked generators of π_1 .

• Treats both complex structure and moduli functor.

Music selected and performed by Aaron Bertram

- Verlinde conjecture,
- Quantum Schubert Calculus,
- $12 = 10 + 2 \times 1$ (with Abramovich)
- Tropical Nullstellensatz (with Easton)

Moduli objects

Curve case.

- Interior: smooth, projective, ample K.
- Boundary: nodal, projective, ample K.

Surface case.

- Interior: Du Val (=ADE), projective, ample K.
- Boundary: semi-log-canonical, projective, ample K.

Higher dimensional case.

- Interior: canonical singularity, projective, ample K.
- Boundary: semi-log-canonical, projective, ample K.

Stable curve/surface/variety.

Interior families — curves

 $X \rightarrow S$ proper family of irreducible curves. Then

 $s \mapsto \operatorname{Nor}(X_s) = \operatorname{Res}(X_s)$ form a smooth, proper family iff $s \mapsto \operatorname{genus}(\operatorname{Res}(X_s))$ is locally constant.

Interior families — higher dimensions

 $\operatorname{CanRes}(X_s)$:= canonical model of $\operatorname{Res}(X_s)$

Theorem

 $X \rightarrow S$ proper family of irreducible varieties of general type. Assume that S is reduced, connected. Equivalent:

- $s \mapsto \operatorname{CanRes}(X_s)$ form a flat, proper family.
- $s \mapsto H^0(\operatorname{Res}(X_s), \mathcal{O}(mK))$ are all constant.
- $s \mapsto vol(\operatorname{Res}(X_s), K)$ is constant.
- $s \mapsto (K^n)$ is constant for $\operatorname{CanRes}(X_s)$.

Interior families III.

Corollary (Siu, Kawamata, Nakayama)

Let $g: X \to S$ be flat, proper, fibers of general type, smooth (or with canonical singularities). Then $s \mapsto Can(X_s)$ form a flat, stable family.

Stable families I.

Curve case. $X \rightarrow S$ flat, proper, fibers nodal with ample *K*. **Higher dimensional case.** $X \rightarrow S$ flat, proper, fibers slc with ample *K*. **NEED MORE!**

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨー つくで

Semi-log-canonical is not an open condition

Family of varieties in $\mathbb{P}^5_{\mathbf{x}} \times \mathbb{A}^2_{st}$:

$$X := \left(\mathsf{rank} \left(\begin{array}{cc} x_0 & x_1 & x_2 \\ x_1 + \mathsf{s} x_4 & x_2 + \mathsf{t} x_5 & x_3 \end{array} \right) \leq 1 \right).$$

Claim: the following are equivalent:

$$- K_{X_{st}}$$
 is \mathbb{Q} -Cartier

- $-3K_{X_{st}}$ is Cartier
- either (s, t) = (0, 0) or $st \neq 0$.

Being stable is not even locally closed.

Stable families II.

Higher dimensional case.

 $g: X \rightarrow S$ flat, proper, fibers slc with ample K AND

- If S = DVR: $K_{X/S}$ is Q-Cartier.
- If S normal: $K_{X/S}$ is Q-Cartier.
- If S reduced: equivalent to normalization (char 0).
- (KSB defn.) $\forall m > 0 \exists L_m$ flat sheaf with S_2 fibers:

$$L_m \cong \omega_{X/S}^{\otimes m}$$
 on the Gorenstein locus of g.

• (Viehweg defn.) $\exists m > 0$ and a line bundle L_m :

 $L_m \cong \omega_{X/S}^{\otimes m}$ on the Gorenstein locus of g.

Stable families III.

Comparing V and KSB conditions:

- V version depends on *m* in char p.
- equivalent over reduced schemes in char 0 (not in char p).
- [K-Altmann, 2015] For cyclic quotients of surfaces
 - infinitesimal KSB-deformations all globalize,
 - there are many more infinitesimal V-deformations.

KSB-stability is representable

 $f: X \rightarrow S$: flat family of normal varieties of pure relative dimension,

Theorem

There is a monomorphism $i_S: S^{\text{stable}} \to S$

such that, for every $g: T \rightarrow S$, the following are equivalent

- The pull-back $f_T : X_T \to T$ is KSB-stable.
- 2 g factors as

$$g: T o S^{ ext{stable}} \stackrel{i_S}{ o} S.$$

Moduli space of stable varieties

Theorem

The moduli functor of stable varieties has a coarse moduli space that is locally of finite type and satisfies the valuative criterion of properness.

Theorem (Karu, Alexeev, Hacon-McKernan-Xu)

・ロト ・ (中 ト ・ 三 ト ・ 三 ト

The connected components are proper.

Theorem (Fujino, Kovács-Patakfalvi)

The connected components are projective.

Complete families: Semi-stable reduction

Curve case. (Kempf–Knudsen–Mumford–Saint-Donat) $X \rightarrow S$ proper family of curves. There exist • $S' \rightarrow S$ proper, generically finite and • $X' \to S'$ birational to $X \times_S S'$, such that $X' \rightarrow S'$ has reduced, nodal fibers. Higher dimensional case. (Abramovich, Karu, Temkin, Włodarczyk) such that $X' \to S'$ has

reduced, normal crossing (almost) fibers.

Complete families of curves

Reduced, nodal curve determines the stable curve.

- Geometric: delete rtl tails and contract rtl bridges.
- Canonical ring: $C \mapsto \operatorname{Proj} \sum H^0(C, mK_C)$.
- Functorial: $g: X \to S$ flat, proper; reduced, nodal fibers, $\Rightarrow g^{\text{stable}}: X^{\text{stable}} \to S.$

Proof. Etale locally over (0, S). Take a divisor D that meets X_0 at all comps of $(X_0)^{\text{stable}}$. Claim: $R^1g_*\mathcal{O}(mD) = 0$ for $m \gg 1$ so $X^{\text{stable}} = \operatorname{Proj}_S \sum_{m \gg 1} \mathcal{O}_X(mD)$.

Complete families of surfaces I.

Reduced, normal crossing surface does not determine a stable surface.

- $\sum H^0(S, mK_S)$ need not be finitely generated (K. 2011).
- A surface *S* (with quotient singularties) can have 2 deformations $X_i \to \mathbb{A}^1$ such that the central fibers of $X_i^{\text{stable}} \to \mathbb{A}^1$ are not isomorphic.

Corollary. Over a nodal curve B = (xy = 0) there is $X \rightarrow B$ flat, reduced, quotient sings. fibers such that $X^{\text{stable}} \rightarrow B$ does not exist,

(not even after ramified base change).

Complete families of varieties II.

Theorem (K.-Nicaise-Xu)

 $g: X \to S$ with reduced, slc fibers and normal generic fiber. If S is smooth then we get $g^{\text{stable}}: X^{\text{stable}} \to S$. (+ commutes with dominant base changes)

• (Tsunoda, 1984) For smoothings of snc surfaces, we get a unique canonical model. (????)

Questions.

- KNX over normal bases?
- Only finitely many stable models?
- Tsunoda in higher dimension?

Moduli of pairs: objects

Stable pair: $(X, \Delta = \sum a_i D_i)$

- Global condition: $K_X + \Delta$ ample.
- Local condition: semi-log-canonical

implies $0 \le a_i \le 1$ and $D_i \not\subset \operatorname{Sing}(X)$.

Canonical ring: $\sum_{m\geq 0} H^0(X, \mathcal{O}_X(mK_X + \lfloor m\Delta \rfloor)).$

Moduli of pairs: families

Major problem: In stable families $g : (X, \Delta) \rightarrow S$ $X \rightarrow S$ is flat but

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $\Delta \rightarrow S$ is not flat.

Example: lines on families of quadric surfaces.

$$Q:=(x^2-y^2+z^2-t^2w^2=0)\subset \mathbb{P}^3_{xyzw}\times \mathbb{A}^1_t,$$

 $L_t = (x - y = z - tw = 0)$ and $L'_t = (x + y = z - tw = 0)$.

Compute self-intersections: $(aL_0 + bL'_0)^2 = \frac{1}{2}(a+b)^2$ and $(aL_g + bL'_g)^2 = 2ab$. So

- $(aL_0 + bL_0')^2 \ge (aL_g + bL_g')^2$,
- $aL_t + bL'_t$ Cartier on every fiber iff a + b is even,
- aL + bL' is globally Cartier iff equality holds.

Numerical Cartier condition; weak form

Theorem (K., Bhatt-de Jong)

- $-f: X \rightarrow C$ is flat, projective,
- normal or S_2 fibers.
- -D divisor such that each D_c is Cartier and ample. Then

- $c \mapsto (D_c^n)$ is upper semi-continuous and
- **2** *D* is Cartier iff the above function is constant.

Numerical criterion of stability

Corollary

 $f: (X, \Delta) \rightarrow S$ flat, projective, S reduced,

- fibers are semi-log-canonical with
- ample log-canonical class $K_{X_s} + \Delta_s$. Then
 - $s \mapsto (K_{X_s} + \Delta_s)^n$ is upper semi-continuous and
 - *f* is stable iff $s \mapsto (K_{X_s} + \Delta_s)^n$ is locally constant.

Not equivalent $s \mapsto H^0(X_s, \mathcal{O}_{X_s}(mK_{X_s} + \lfloor m\Delta_s \rfloor))$ is locally constant.

Coefficients $\geq \frac{1}{2} - I$.

Principle. If (X, Δ) is semi-log-canonical and the coefficients of Δ are close to 1 then Supp Δ is well behaved.

Theorem (K.-Kovács, 2010, 2018)

 $\operatorname{Supp}\Delta^{=1}$ is Du Bois.

Theorem	(K.	2014)	
	<u>۱</u>	,	

 $\mathrm{Supp}\Delta^{>5/6}$ is seminornal.

Example: $\left(\mathbb{A}^2, \frac{5}{6}(x^2 = y^3)\right)$ is log-canonical.

Coefficients
$$\geq \frac{1}{2}$$
 — II.

Theorem (K. 2014)

 $g: X \to S$ is stable then $\operatorname{Supp} \Delta^{>1/2}$ is flat over S.

Corollary

If all coefficients in Δ are $> \frac{1}{2}$ then the moduli of stable pairs (X, Δ) can be handled as

- flat families of varieties X plus
- If at families of divisors on X.

Coefficients $\geq \frac{1}{2}$ — III.

Theorem. [K. 2018] $g : X \to S$ is stable, S reduced and all coefficients in Δ are $\geq \frac{1}{2}$. Then:

The sheaves ω^[m]_{X/S}(⌊mΔ⌋) are flat over S and commute with base change.
s ↦ χ(X_s, ω^[m]_{X_s}(⌊mΔ_s⌋)) are locally constant.
If coeffΔ ⊂ {1/2, 2/3, 3/4,...,1}, then, f_{*}ω^[m]_{X/S}(⌊mΔ⌋) is

locally free and commutes with base change.

Caveat: Normal general fiber or relative dim. 2.

Main open question

What is the right moduli functor for general stable pairs (X, Δ) ?

Known cases

- Reduced bases in char 0.
- Non-reduced bases: non-equivalent versions in char 0.

• Problems in char p, even over reduced curves.

Coefficients $\geq \frac{1}{2}$ — IV.

Localized version: Let $(X, H + \Delta)$ be lc pair, H is Cartier and $\operatorname{coeff} \Delta \subset [\frac{1}{2}, 1]$. Then $\omega_X^{[m]}(\lfloor m\Delta \rfloor)$ is S_3 along H.

History: Elkik, Fujino, Alexeev, Hacon

Method of proof:

 $-g: Y \to X$ proper, $H \subset X$ Cartier, $H_Y := g^*H$.

- F a coherent sheaf on Y, S_3 along H_Y .

When is $g_*F S_3$ along *H*?

Push-forward $0 \to F(-H_Y) \to F \to F|_{H_Y} \to 0$ to get

 $0 \rightarrow g_*F(-H) \rightarrow g_*F \rightarrow g_*(F|_{H_Y}) \rightarrow \mathcal{O}_X(-H) \otimes R^1g_*F$

Thus g_*F is S_3 along H if (almost iff)

(a) $R^1g_*F = 0$ and (b) $g_*(F|_{H_Y})$ is S_2 along H. Coefficients $\geq \frac{1}{2} - V$.

(a) $R^1g_*F = 0$ and (b) $g_*(F|_{H_Y})$ is S_2 along H.

Kodaira-type vanishing: (a) needs F = K + (positive)

(b) needs F = (negative) + (fractional) *Example:* $g : S \to T$ birational map of normal surfaces, *F* exceptional. Then

 $F \text{ is } g\text{-negative} \Rightarrow F \text{ is effective} \Rightarrow g_*\mathcal{O}_S(F) = \mathcal{O}_T \text{ is } S_2.$ Choosing $g: Y \to X$ small, the fractional part gives some wiggle room. Coefficients $\geq \frac{1}{2}$ — VI.

Question. Let (X, Δ) be an slc pair, $\operatorname{coeff} \Delta \subset [\frac{2}{3}, 1]$. $x \in X$ codimension ≥ 3 , not an lc center. Is

 $\operatorname{depth}_{x} \omega_{X}^{[m]}(\lfloor m\Delta \rfloor) \geq 3$?

◆□▶ ◆昼▶ ◆臣▶ ◆臣▶ 臣 ∽��?