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Regularity

For each k ∈ Z, consider the category Ak(P
n) of complexes:

(∗) OPn(−k − n)⊗ V−n → · · · → OPn(−k)⊗ V0

where V−p are finite-dimensional vector spaces over C.
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For each k ∈ Z, consider the category Ak(P
n) of complexes:

(∗) OPn(−k − n)⊗ V−n → · · · → OPn(−k)⊗ V0

where V−p are finite-dimensional vector spaces over C.

A coherent sheaf F on Pn is (Castelnuovo-Mumford) k-regular:

Hi (Pn,F(k − i)) = 0 for all i > 0
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Regularity

For each k ∈ Z, consider the category Ak(P
n) of complexes:

(∗) OPn(−k − n)⊗ V−n → · · · → OPn(−k)⊗ V0

where V−p are finite-dimensional vector spaces over C.

A coherent sheaf F on Pn is (Castelnuovo-Mumford) k-regular:

Hi (Pn,F(k − i)) = 0 for all i > 0

if and only if F is an object of Ak(P
n), in which case (Beilinson):

V−p = H0(Pn,F ⊗ Ωp(p + k))
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Complexes

The scheme of framed complexes (∗) is affine, a disjoint union of:

Yk(r−n, ..., r0) ⊂ ×n
p=1Hom(Cr−p ,Cr−p+1 ⊗W )

(where W = H0(Pn,OPn(1))) with an action of G =
∏

GL(r−p).
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Complexes

The scheme of framed complexes (∗) is affine, a disjoint union of:

Yk(r−n, ..., r0) ⊂ ×n
p=1Hom(Cr−p ,Cr−p+1 ⊗W )

(where W = H0(Pn,OPn(1))) with an action of G =
∏

GL(r−p).

The category Ak(P
n) of complexes (∗) is Artinian, with simples:

σp := OPn(−k − p)[p]

freely generating the Grothendieck group K (Pn).
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Complexes

The scheme of framed complexes (∗) is affine, a disjoint union of:

Yk(r−n, ..., r0) ⊂ ×n
p=1Hom(Cr−p ,Cr−p+1 ⊗W )

(where W = H0(Pn,OPn(1))) with an action of G =
∏

GL(r−p).

The category Ak(P
n) of complexes (∗) is Artinian, with simples:

σp := OPn(−k − p)[p]

freely generating the Grothendieck group K (Pn).

A stability condition in this context is a set of complex numbers:

Z (σp) = zp ∈ H = {z ∈ C | 0 < arg(z) ≤ 1}

defining a linear map Z : K (Pn) → C with Z (Ak(P
n)) ⊂ H.
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Complexes

The scheme of framed complexes (∗) is affine, a disjoint union of:

Yk(r−n, ..., r0) ⊂ ×n
p=1Hom(Cr−p ,Cr−p+1 ⊗W )

(where W = H0(Pn,OPn(1))) with an action of G =
∏

GL(r−p).

The category Ak(P
n) of complexes (∗) is Artinian, with simples:

σp := OPn(−k − p)[p]

freely generating the Grothendieck group K (Pn).

A stability condition in this context is a set of complex numbers:

Z (σp) = zp ∈ H = {z ∈ C | 0 < arg(z) ≤ 1}

defining a linear map Z : K (Pn) → C with Z (Ak(P
n)) ⊂ H. Thus,

Z (E ) =

n
∑

p=0

zpr−p for E ∈ Ck(r−n, ..., r0)
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King’s Theorem

Theorem (King). Each Z gives polarized GIT quotients:

MPn(k ; rn, ..., r0) = Yk(r−n, ..., r0)//GL(r)

such that E ∈ Yk has a semi-stable orbit if and only if:

φZ (F ) ≤ φZ (E ) := arg(Z (E ))

for all sub-complexes F ⊆ E .
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King’s Theorem

Theorem (King). Each Z gives polarized GIT quotients:

MPn(k ; rn, ..., r0) = Yk(r−n, ..., r0)//GL(r)

such that E ∈ Yk has a semi-stable orbit if and only if:

φZ (F ) ≤ φZ (E ) := arg(Z (E ))

for all sub-complexes F ⊆ E .

Finiteness Corollary. Each subcategory

P(φ) = {E ∈ Ak(P
n) | φZ (E ) = φ and E is semi-stable}

is Artinian (in particular, Abelian) and each complex E ∈ Ak(P
n)

has a unique finite Harder-Narasimhan filtration.
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Incorporating the Hilbert Polynomial.

Corollary. (Altavilla,B,Petkovic,Mu). For s ∈ R, let:

Zs(E ) := h′E (s) + i · hE (s) ∈ C

where hE (s) is the Hilbert polynomial of E . Then Zs defines a
stability condition on Ak(P

n) for k = ⌈s⌉.
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Incorporating the Hilbert Polynomial.

Corollary. (Altavilla,B,Petkovic,Mu). For s ∈ R, let:

Zs(E ) := h′E (s) + i · hE (s) ∈ C

where hE (s) is the Hilbert polynomial of E . Then Zs defines a
stability condition on Ak(P

n) for k = ⌈s⌉.

Proof. hOPn
(s) has simple zeroes at −n, ...,−1, therefore Zs(OPn)

winds around the origin, crossing the x-axis at s = −n, ...,−1. It
follows that Zs(σp) = (−1)pZs(OPn(−p)) ∈ H for s ∈ (−1, 0].
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Incorporating the Hilbert Polynomial.

Corollary. (Altavilla,B,Petkovic,Mu). For s ∈ R, let:

Zs(E ) := h′E (s) + i · hE (s) ∈ C

where hE (s) is the Hilbert polynomial of E . Then Zs defines a
stability condition on Ak(P

n) for k = ⌈s⌉.

Proof. hOPn
(s) has simple zeroes at −n, ...,−1, therefore Zs(OPn)

winds around the origin, crossing the x-axis at s = −n, ...,−1. It
follows that Zs(σp) = (−1)pZs(OPn(−p)) ∈ H for s ∈ (−1, 0].

Question. Every coherent sheaf F is eventually k-regular.
Suppose F is a Gieseker-stable coherent sheaf on Pn.
Is F eventually s-stable? (The converse is true)
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Incorporating the Hilbert Polynomial.

Corollary. (Altavilla,B,Petkovic,Mu). For s ∈ R, let:

Zs(E ) := h′E (s) + i · hE (s) ∈ C

where hE (s) is the Hilbert polynomial of E . Then Zs defines a
stability condition on Ak(P

n) for k = ⌈s⌉.

Proof. hOPn
(s) has simple zeroes at −n, ...,−1, therefore Zs(OPn)

winds around the origin, crossing the x-axis at s = −n, ...,−1. It
follows that Zs(σp) = (−1)pZs(OPn(−p)) ∈ H for s ∈ (−1, 0].

Question. Every coherent sheaf F is eventually k-regular.
Suppose F is a Gieseker-stable coherent sheaf on Pn.
Is F eventually s-stable? (The converse is true)

Note. If F “comes on board” it is for s > reg(F)− 1.
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Examples

Ideal of the Twisted Cubic (Schmidt-Xia) Let c = [IC ]. Then:
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Examples

Ideal of the Twisted Cubic (Schmidt-Xia) Let c = [IC ]. Then:

IC is 2-regular and stable for all s > 1
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Examples

Ideal of the Twisted Cubic (Schmidt-Xia) Let c = [IC ]. Then:

IC is 2-regular and stable for all s > 1

IE∪p is 3-regular and stable for all s > 6.3 via Ip(−1) → IE∪p
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Examples

Ideal of the Twisted Cubic (Schmidt-Xia) Let c = [IC ]. Then:

IC is 2-regular and stable for all s > 1

IE∪p is 3-regular and stable for all s > 6.3 via Ip(−1) → IE∪p

IE∪p∗ is 4-regular and stable for all s > 7.5 via OP3(−1) → IE∪p∗

and at that point, s-moduli is the Hilbert scheme.
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Ideal of the Twisted Cubic (Schmidt-Xia) Let c = [IC ]. Then:

IC is 2-regular and stable for all s > 1

IE∪p is 3-regular and stable for all s > 6.3 via Ip(−1) → IE∪p

IE∪p∗ is 4-regular and stable for all s > 7.5 via OP3(−1) → IE∪p∗

and at that point, s-moduli is the Hilbert scheme.

The Twisted Cubic. (Mu) Let c = [OC ]. Then:
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Examples

Ideal of the Twisted Cubic (Schmidt-Xia) Let c = [IC ]. Then:

IC is 2-regular and stable for all s > 1

IE∪p is 3-regular and stable for all s > 6.3 via Ip(−1) → IE∪p

IE∪p∗ is 4-regular and stable for all s > 7.5 via OP3(−1) → IE∪p∗

and at that point, s-moduli is the Hilbert scheme.

The Twisted Cubic. (Mu) Let c = [OC ]. Then:

OC is 1-regular and s-stable for s > 0.35 via OP3 → OC .
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Examples

Ideal of the Twisted Cubic (Schmidt-Xia) Let c = [IC ]. Then:

IC is 2-regular and stable for all s > 1

IE∪p is 3-regular and stable for all s > 6.3 via Ip(−1) → IE∪p

IE∪p∗ is 4-regular and stable for all s > 7.5 via OP3(−1) → IE∪p∗

and at that point, s-moduli is the Hilbert scheme.

The Twisted Cubic. (Mu) Let c = [OC ]. Then:

OC is 1-regular and s-stable for s > 0.35 via OP3 → OC .

OE (p) is 1-regular, and s-stable for s > 0.7 via OΛ → OE (p) and
at that point, s-moduli is the moduli of Gieseker-stable sheaves.

(The indicated morphisms are injective morphisms of complexes).
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Chern Classes and (Hilbert) Polynomials

Let X be a smooth complex projective variety and let:

ch : K (X ) → H∗(X .Q)

be the Chern character map.
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Chern Classes and (Hilbert) Polynomials

Let X be a smooth complex projective variety and let:

ch : K (X ) → H∗(X .Q)

be the Chern character map. Let OX (1) be an ample line bundle
(with divisor class H) and let:

h : K (X ) → Q[s]; hE (s) = deg(esH · ch(E ) · td(X ))

be the Hilbert polynomial.
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Chern Classes and (Hilbert) Polynomials

Let X be a smooth complex projective variety and let:

ch : K (X ) → H∗(X .Q)

be the Chern character map. Let OX (1) be an ample line bundle
(with divisor class H) and let:

h : K (X ) → Q[s]; hE (s) = deg(esH · ch(E ) · td(X ))

be the Hilbert polynomial. Both maps factor through finitely
generated free abelian subgroups Γ of the respective rational vector
spaces. We will also see a simplified polynomial:

f : K (X ) → Q[s]; fE (s) = deg(esHch(E ))

and we’ll write K (X ) → Γ to mean any one of these three.
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Bridgeland’s Generalization

Bridgeland generalized the prototype to stability conditions on X :
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Bridgeland’s Generalization

Bridgeland generalized the prototype to stability conditions on X :

Ak(P
n) the heart A of a bounded t-structure on Db(X )
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Bridgeland’s Generalization

Bridgeland generalized the prototype to stability conditions on X :

Ak(P
n) the heart A of a bounded t-structure on Db(X )

K (X ) → Γ
Z
→ C is fixed, sending non-zero objects of A to H.
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Bridgeland’s Generalization

Bridgeland generalized the prototype to stability conditions on X :

Ak(P
n) the heart A of a bounded t-structure on Db(X )

K (X ) → Γ
Z
→ C is fixed, sending non-zero objects of A to H.

Warning. Unlike Ak(P
n), hearts A are generally not Artinian.
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Bridgeland’s Generalization

Bridgeland generalized the prototype to stability conditions on X :

Ak(P
n) the heart A of a bounded t-structure on Db(X )

K (X ) → Γ
Z
→ C is fixed, sending non-zero objects of A to H.

Warning. Unlike Ak(P
n), hearts A are generally not Artinian.

Instead, the needed finiteness comes from the support property:
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Bridgeland’s Generalization

Bridgeland generalized the prototype to stability conditions on X :

Ak(P
n) the heart A of a bounded t-structure on Db(X )

K (X ) → Γ
Z
→ C is fixed, sending non-zero objects of A to H.

Warning. Unlike Ak(P
n), hearts A are generally not Artinian.

Instead, the needed finiteness comes from the support property:

ǫ · ||E ||Γ ≤ |Z (hE )|

for a constant ǫ and all semi-stable E ∈ A.

MSRI Stability Conditions



The Prototype Bridgeland Stability Conditions Low Dimension Perversity

Bridgeland’s Generalization

Bridgeland generalized the prototype to stability conditions on X :

Ak(P
n) the heart A of a bounded t-structure on Db(X )

K (X ) → Γ
Z
→ C is fixed, sending non-zero objects of A to H.

Warning. Unlike Ak(P
n), hearts A are generally not Artinian.

Instead, the needed finiteness comes from the support property:

ǫ · ||E ||Γ ≤ |Z (hE )|

for a constant ǫ and all semi-stable E ∈ A. It follows that

P(φ) = {semi-stable objects E ∈ A with φZ (E ) = φ}

are Artinian and each object of A has a finite HN filtration.
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Bridgeland’s Generalization

Bridgeland generalized the prototype to stability conditions on X :

Ak(P
n) the heart A of a bounded t-structure on Db(X )

K (X ) → Γ
Z
→ C is fixed, sending non-zero objects of A to H.

Warning. Unlike Ak(P
n), hearts A are generally not Artinian.

Instead, the needed finiteness comes from the support property:

ǫ · ||E ||Γ ≤ |Z (hE )|

for a constant ǫ and all semi-stable E ∈ A. It follows that

P(φ) = {semi-stable objects E ∈ A with φZ (E ) = φ}

are Artinian and each object of A has a finite HN filtration.

Extension to Db(X ). The Z -semi-stable objects of Db(E ) are:

E [p] for E ∈ P(φ) and p ∈ Z

with φZ (E [p]) = φZ (E ) + p.
MSRI Stability Conditions
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Significance

Theorem (Bridgeland) With a natural topology on the locus
Stab(X) of stability conditions (factoring through Γ) the map:

Stab(X ) → Hom(Γ,C) = Crk(Γ)

is a local homeomorphism, making Stab(X) a complex manifold.
(i.e. locally, the t-structure and A deform along with Z ).

• Stab(X) is a candidate for Kähler moduli when X is Calabi-Yau.
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Significance

Theorem (Bridgeland) With a natural topology on the locus
Stab(X) of stability conditions (factoring through Γ) the map:

Stab(X ) → Hom(Γ,C) = Crk(Γ)

is a local homeomorphism, making Stab(X) a complex manifold.
(i.e. locally, the t-structure and A deform along with Z ).

• Stab(X) is a candidate for Kähler moduli when X is Calabi-Yau.

• Moduli of semi-stable objects are equipped with “determinant”
polarizations (Bayer-Macŕı) that vary continuously, resulting in
wall-crossing and (in some surface cases) determining ample,
movable etc cones of moduli spaces of Gieseker-stable sheaves.
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Significance

Theorem (Bridgeland) With a natural topology on the locus
Stab(X) of stability conditions (factoring through Γ) the map:

Stab(X ) → Hom(Γ,C) = Crk(Γ)

is a local homeomorphism, making Stab(X) a complex manifold.
(i.e. locally, the t-structure and A deform along with Z ).

• Stab(X) is a candidate for Kähler moduli when X is Calabi-Yau.

• Moduli of semi-stable objects are equipped with “determinant”
polarizations (Bayer-Macŕı) that vary continuously, resulting in
wall-crossing and (in some surface cases) determining ample,
movable etc cones of moduli spaces of Gieseker-stable sheaves.

• Families of varieties (or triangulated categories) support family
stability conditions, and families of moduli of semi-stable objects.
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Curves

Let C be a curve. Then fE (s) = s · rk(E ) + deg(E ) and let:

Zs(f ) := f ′(s) + i · f (s); Zs(E ) = rk(E ) + i · fE (s)
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Curves

Let C be a curve. Then fE (s) = s · rk(E ) + deg(E ) and let:

Zs(f ) := f ′(s) + i · f (s); Zs(E ) = rk(E ) + i · fE (s)

This maps Coh(C ) to the right half plane, with:

fE (s) > 0 ⇔ µ(E ) + s > 0

where µ(E ) is the Mumford-Maruyama slope.
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Curves

Let C be a curve. Then fE (s) = s · rk(E ) + deg(E ) and let:

Zs(f ) := f ′(s) + i · f (s); Zs(E ) = rk(E ) + i · fE (s)

This maps Coh(C ) to the right half plane, with:

fE (s) > 0 ⇔ µ(E ) + s > 0

where µ(E ) is the Mumford-Maruyama slope.

A tilt creates A = CohZ (C ) mapping to H via:

A = 〈{E ∈ P(φ) |φ < 0}, {F [1] ∈ P(φ+ 1)|φ ≤ 0}〉
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K3 Surfaces

Theorem. (Bridgeland) Let S be a K3 surface and

gE (s) = deg(esHch(E )
√

td(S))

and let Zs,t(g) = ig(s − it) = ℑ(g(s + it)) + iℜ(g(s + it)).
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K3 Surfaces

Theorem. (Bridgeland) Let S be a K3 surface and

gE (s) = deg(esHch(E )
√

td(S))

and let Zs,t(g) = ig(s − it) = ℑ(g(s + it)) + iℜ(g(s + it)).

Then Z maps CohZ
′

(S) to the right half plane when t > 1√
g−1

.
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K3 Surfaces

Theorem. (Bridgeland) Let S be a K3 surface and

gE (s) = deg(esHch(E )
√

td(S))

and let Zs,t(g) = ig(s − it) = ℑ(g(s + it)) + iℜ(g(s + it)).

Then Z maps CohZ
′

(S) to the right half plane when t > 1√
g−1

.

Polynomial facts.

(i) If f : R → R, then ℜ(f (s + it)) has no complex roots when
t > max{ℑ(z) | f (z) = 0}
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K3 Surfaces

Theorem. (Bridgeland) Let S be a K3 surface and

gE (s) = deg(esHch(E )
√

td(S))

and let Zs,t(g) = ig(s − it) = ℑ(g(s + it)) + iℜ(g(s + it)).

Then Z maps CohZ
′

(S) to the right half plane when t > 1√
g−1

.

Polynomial facts.

(i) If f : R → R, then ℜ(f (s + it)) has no complex roots when
t > max{ℑ(z) | f (z) = 0}

(ii) Then f (s + it) winds around the origin (with s), and so does:

d

ds
ℜf (s + it) + i · ℜf (s + it) =: Zs,t(f )

(there isn’t an important distinction when deg(f ) = 2).
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Surfaces

Geometric Facts. Let S be any surface and

fE (s) =
s2

2
· H2c0(E ) + s · H · c1(E ) + c2(E )

Then
f ′E (s) = s · H2rk(E ) + H · c1(E )

behaves like fE (s) for curves. In addition:
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Surfaces

Geometric Facts. Let S be any surface and

fE (s) =
s2

2
· H2c0(E ) + s · H · c1(E ) + c2(E )

Then
f ′E (s) = s · H2rk(E ) + H · c1(E )

behaves like fE (s) for curves. In addition:

Hodge Index. If L is a line bundle, then c2(L) =
1
2c1(L)

2 and:

∆(fL) = (H · c1(L))
2 − H2c21 (L) ≥ 0

so fL has only real roots, and more generally,
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Surfaces

Geometric Facts. Let S be any surface and

fE (s) =
s2

2
· H2c0(E ) + s · H · c1(E ) + c2(E )

Then
f ′E (s) = s · H2rk(E ) + H · c1(E )

behaves like fE (s) for curves. In addition:

Hodge Index. If L is a line bundle, then c2(L) =
1
2c1(L)

2 and:

∆(fL) = (H · c1(L))
2 − H2c21 (L) ≥ 0

so fL has only real roots, and more generally,

Bogomolov. If E is a Mumford-stable torsion-free sheaf, then:

∆(fE ) = (H · c1(E ))
2 − 2H2c0(E )c2(E ) ≥ 0

and fE has only real roots.
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Surfaces

To show that Zs,t gives a stability condition on a tilt, let t > 0, so:

ℜ(fE (s+it)) has simple real roots (in s) when E is Mumford stable
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Surfaces

To show that Zs,t gives a stability condition on a tilt, let t > 0, so:

ℜ(fE (s+it)) has simple real roots (in s) when E is Mumford stable

Step 1. Z ′
s,t(f ) maps Coh(S) to the right and CohZ

′

s,t (S) to H.
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Surfaces

To show that Zs,t gives a stability condition on a tilt, let t > 0, so:

ℜ(fE (s+it)) has simple real roots (in s) when E is Mumford stable

Step 1. Z ′
s,t(f ) maps Coh(S) to the right and CohZ

′

s,t (S) to H.

Step 2. Zs,t(f ) maps CohZ
′

s,t (S) to the right and CohZ
′
,Z (S) to H.

MSRI Stability Conditions



The Prototype Bridgeland Stability Conditions Low Dimension Perversity

Surfaces

To show that Zs,t gives a stability condition on a tilt, let t > 0, so:

ℜ(fE (s+it)) has simple real roots (in s) when E is Mumford stable

Step 1. Z ′
s,t(f ) maps Coh(S) to the right and CohZ

′

s,t (S) to H.

Step 2. Zs,t(f ) maps CohZ
′

s,t (S) to the right and CohZ
′
,Z (S) to H.

The key point is that ℜ(fE (s + it)) winds around the origin when
E is Mumford (equivalently Z ′

s,t) stable, so that the intersection of
the parabola Zs,t(fE ) with the y -axis has the right sign.
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Surfaces

To show that Zs,t gives a stability condition on a tilt, let t > 0, so:

ℜ(fE (s+it)) has simple real roots (in s) when E is Mumford stable

Step 1. Z ′
s,t(f ) maps Coh(S) to the right and CohZ

′

s,t (S) to H.

Step 2. Zs,t(f ) maps CohZ
′

s,t (S) to the right and CohZ
′
,Z (S) to H.

The key point is that ℜ(fE (s + it)) winds around the origin when
E is Mumford (equivalently Z ′

s,t) stable, so that the intersection of
the parabola Zs,t(fE ) with the y -axis has the right sign.

Remark. For fixed Chern class c , the “walls” for moduli are
semi-circles. In particular, there can (in principle) be “dead zones”
where there are no Zs,t-stable objects with invariant c .
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Threefolds

To find a stability condition based on Zs,t : Γ → C:
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Threefolds

To find a stability condition based on Zs,t : Γ → C:

Step 1. Z ′′
s,t(f ) maps Coh(X ) to the RHP and CohZ

′′

(X ) to H.
(This is Z ′′ = rk(E )H3 + i · (sH3rk(E ) + H2c1(E ) again....)
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Threefolds

To find a stability condition based on Zs,t : Γ → C:

Step 1. Z ′′
s,t(f ) maps Coh(X ) to the RHP and CohZ

′′

(X ) to H.
(This is Z ′′ = rk(E )H3 + i · (sH3rk(E ) + H2c1(E ) again....)

Step 2. Z ′
s,t(f ) maps CohZ

′′(s)(X ) to RHP and CohZ
′′
,Z ′

(X ) to H

by the Bogomolov and Hodge Index Theorems applied to f ′E .

MSRI Stability Conditions



The Prototype Bridgeland Stability Conditions Low Dimension Perversity

Threefolds

To find a stability condition based on Zs,t : Γ → C:

Step 1. Z ′′
s,t(f ) maps Coh(X ) to the RHP and CohZ

′′

(X ) to H.
(This is Z ′′ = rk(E )H3 + i · (sH3rk(E ) + H2c1(E ) again....)

Step 2. Z ′
s,t(f ) maps CohZ

′′(s)(X ) to RHP and CohZ
′′
,Z ′

(X ) to H

by the Bogomolov and Hodge Index Theorems applied to f ′E .

Step 3.

(i) (Toda) ∆(f ′E ) ≥ 0 for tilt (Z ′)-stable objects of CohZ
′′

(X ).
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Threefolds

To find a stability condition based on Zs,t : Γ → C:

Step 1. Z ′′
s,t(f ) maps Coh(X ) to the RHP and CohZ

′′

(X ) to H.
(This is Z ′′ = rk(E )H3 + i · (sH3rk(E ) + H2c1(E ) again....)

Step 2. Z ′
s,t(f ) maps CohZ

′′(s)(X ) to RHP and CohZ
′′
,Z ′

(X ) to H

by the Bogomolov and Hodge Index Theorems applied to f ′E .

Step 3.

(i) (Toda) ∆(f ′E ) ≥ 0 for tilt (Z ′)-stable objects of CohZ
′′

(X ).

(ii) If X is P3, Fano of Picard rank one, abelian, E × P2,... then
(Bayer,Macŕı, Stellari), the points s + it for which Zs,t(fE ) moves
in the “wrong direction” are dead zones for Z ′

s,t-moduli. Like
Bogomolov, this is a quadratic condition on the coefficients.
(formulation is due to Bayer,Macŕı, Stellari). It is what we need.
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The Heart of the Matter

The succesive approximations by tilting produce a series of hearts:

Coh(X ) = A0 with Z (n−1) mapping to the right half plane.

CohZ
(n−1)

(X ) = A1 with Z (n−2) mapping to the right half plane.

...

Coh...,Z (X ) = An with Z mapping to H. Stability condition.

These are succesive approximations to a stability condition in the
sense that coherent sheaves supported in codimension > i + 1 are
in Ai and map to zero under Z (n−i−1). But the categories Ai seem
to be a series of “perversier” t-structures in the following sense:
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More and More Perverse

For all coherent sheaves F :

(0) Coh(X ) contains F and Hom(F ,OX ) = RHom(F ,OX )≥0.
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More and More Perverse

For all coherent sheaves F :

(0) Coh(X ) contains F and Hom(F ,OX ) = RHom(F ,OX )≥0.

For all d >> 0
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More and More Perverse

For all coherent sheaves F :

(0) Coh(X ) contains F and Hom(F ,OX ) = RHom(F ,OX )≥0.

For all d >> 0

(1) A1 contains F(d) and RHom(F(d),OX )≥1[1].

...
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More and More Perverse

For all coherent sheaves F :

(0) Coh(X ) contains F and Hom(F ,OX ) = RHom(F ,OX )≥0.

For all d >> 0

(1) A1 contains F(d) and RHom(F(d),OX )≥1[1].

...

(n) An contains F(d) and its Verdier dual RHom(F(d),OX )[n]
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More and More Perverse

For all coherent sheaves F :

(0) Coh(X ) contains F and Hom(F ,OX ) = RHom(F ,OX )≥0.

For all d >> 0

(1) A1 contains F(d) and RHom(F(d),OX )≥1[1].

...

(n) An contains F(d) and its Verdier dual RHom(F(d),OX )[n]

Call a heart satisfying property (n) a perverse Serre t-structure
(unless it’s already been named).

Challenge. To directly find Serre t-structures on varieties X .
(e.g. Calabi-Yau 3-folds). Can be done when Db(X ) has strong
full exceptional collections.
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