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Consider the moduli spaces Mg ,n and Mg ,n of smooth, or stable,
n-pointed curves of genus g . These are singular, but have quotient
singularities, mild enough to have rational Chow rings CH∗(Mg ,n)Q
and CH∗(Mg ,n)Q, first defined by David Mumford, which have
been the subject of a lot of work by many authors.

There is an integral version of these rings. They are not defined for
the spaces, but for the corresponding algebraic stacks Mg ,n and
M g ,n.

They are quotient stacks. Recall that if G is an affine algebraic
group acting on a scheme X , the quotient stack is defined so that
a map from a variety S to [X/G ] consists of a G -torsor (a.k.a. a
principal G -bundle) P → S , and a G -equivariant map P → X .
Then X → [X/G ] is a G -torsor.

The classifying stack BG is the quotient stack [pt /G ],
parametrizing G -torsors.
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If X is an algebraic stack representing a moduli problem, one way
to show that X is a quotient stack is by adding to objects enough
data to kill the non trivial automorphisms, resulting in fine moduli
space X for objects with the additional data, so that there is an
affine algebraic group G that permutes the additional data in a
unique transitive way. In this case X ≃ [X/G ].

For example, take Mg with g ≥ 2. A map S → Mg is a family
π : C → S of smooth curves of genus g . We can rigidify it by
adding a frame for the Hodge bundle, that is, a trivialization
π∗ωC/S ≃ O

g
S . Isomorphism classes of such objects give a functor

that is represented by a smooth quasiprojective variety Xg of
dimension g2 + 3g − 3. There is an obvious action of GLg on Xg ,
and Mg = [Xg/GLg ].
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Let X = [X/G ] be a quotient stack. The geometry of X is the
G -equivariant geometry of X . For example, vector bundles on X

correspond to G -equivariant vector bundles on X . More precisely,
they are of the form [V /G ] → [X/G ], where V → X is an
equivariant vector bundle. In particular, vector bundles over BG

correspond to representations of G .

The cohomology of X is the equivariant cohomology of X , which
can be defined via the Borel construction. Totaro and
Edidin–Graham have defined the Chow group of X , via a variant
of the Borel construction, as follows.



5/22

Let i be a non-negative integer, G → GL(V ) a representation of
G , with an open subset U ⊆ V on which G acts freely, and such
that V r U has codimension larger than i . Then G acts freely on
X × U, and

CHi
X

def

= CHi
(

(X × U)/G
)

and
CH∗

X
def

=
⊕

i≥0

CHi
X .

This definition turns out to be independent of the presentation
[X/G ].

If X is smooth, CH∗
X has a natural structure of commutative

graded ring.

If the action has finite stabilizers, and has a moduli space
M = X/G , then it was proved by Edidin and Graham that
(CH∗

X )⊗Q = (CH∗M)⊗Q .
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These Chow rings have almost all the properties of usual Chow
groups. They are contravariant for equivariant morphisms of
smooth stacks. Furthermore, vector bundles on X have Chern
classes in CH∗

X with the usual properties. A representation
G → GL(V ) gives a vector bundle on BG , so there are Chern
classes ci (V ) ∈ CHi

BG .

In particular, if X = [X/G ], the morphism X → pt gives a
morphism [X/G ] → BG , hence a ring homomorphism
CH∗

BG → CH∗
X .

If Y ⊆ X is a closed substack of X , then there is a an exact
localization sequence

CH∗
Y −→ CH∗

X −→ CH∗(X r Y ) −→ 0 .
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If G = Gm, and we can let G act by multiplication of An, and
(An r {0})/Gm = Pn−1. If id : Gm = GL1 is the tautological
representation and t

def

= c1(id), then id descends to O(−1) on
Pn−1, and CH∗ Pn−1 = Z[t]/(tn); hence CH∗

BGm = Z[t].

Analogous arguments using Grassmannians show that if c1, . . . , cn
are the Chern classes of the tautological representation of GLn,
then CH∗

B GLn = Z[c1, . . . , cn].
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Theorem (V., 1998). Consider the affine space A7 of forms of
degree 6 in two variables, with the action of GL2 defined by
(A · f )(x) = (detA)2f (A−1x), and its stable open subvariety
X ⊆ A7 consisting of smooth forms. Then M2 = [X/GL2], and

CH∗
M2 = Z[λ1, λ2]/(10λ1, 2λ

2
1 − 24λ2) .

Here the λi are the Chern classes of the Hodge bundle on M2

(Mumford’s λ classes). The ring CH∗
M2 is not generated by κ

classes (for example, Mumford’s famous formula κ1 = 12λ1 holds
integrally). It seems to be a general fact that integral Chow rings
of stacks of smooth curves in low genus tend to be generated by
λ-classes rather than by κ-classes.
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Here is a sketch how to embed M2 into a representation of GL2.
Geometrically, such a representation corresponds to a vector
bundle on B GL2. Since every X in M2 has a unique degree 2 map
X → C , where C is a smooth curve of genus 0, we can use the
standard description of double covers to give an equivalent
description of M2 as the stack of triples (C , L, s), where C is a
smooth curve of genus 0, L is a line bundle of degree 3 on C , and
s is a section of L⊗2 vanishing at six distinct points. We have a
stack of pairs (C , L), where C and L are as above: since every such
pair is non-canonically isomorphic to (P1,O(3)), this is the
classifying stack of torsors under the automorphism group of the
pair (P1,O(3)), which is GL2. There is vector bundle V of rank 7
on this stack, whose fiber over (C , L) is H0(C , L); since the
condition on s that it has six distinct zeroes is open, this gives an
open embedding M2 ⊆ V .
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Theorem, (Arsie–V., 2004). Let g ≥ 2, and call Hg ⊆ Mg the
smooth substack consisting of hyperelliptic curves. Consider the
affine space A2g+3 of forms of degree 2g + 2 in two variable, with
the open subvariety Xg ⊆ A2g+3 consisting of smooth forms.

If g is even, set G = GL2, with the action on Xg defined by
(A · f )(x) = det(A)g f (A−1x).

If g is odd, set G = Gm × PGL2, with the action of Xg defined by
(

(α, [A]) · f
)

(x) = α−2 det(A)g+1f (A−1x).

Then H = [Xg/G ]. Furthermore

PicHg =

{

Z/(4g + 2) if g is even, and

Z/(8g + 4) if g is odd .
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The case when g is even is much easier, because in this case G is
special, that is, every G -torsor is locally free in the Zariski topology.

Theorem (Edidin–Fulghesu, 2008). If g is even, then

CH∗
Hg = Z[c1, c2]/

(

2(2g + 1)c1, g(g − 1)c21 − 4g(g + 1)c2
)

.

Since H2 = M2, this recovers my previous result for g = 2.

Andrea Di Lorenzo has recently found a different presentation of
Hg when g is odd, in which the group is Gm × GL3, which is
special.

Theorem (Fulghesu–Viviani, Di Lorenzo). If g is odd, then

CH∗
Hg = Z[c1, c2, c3]/

(

4(2g + 1)c1, 8c
2
1 − 2(g2 − 1)c2, 2c3

)

.
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The stack M3 r H3 of non-hyperelliptic curves of genus 3 can be
shown to be the quotient [X/GL3], were X is the space of smooth
quartic forms in three variables, by the action of GL3 defined by
(A · f )(x) = det(A)f (A−1x).

Theorem (Di Lorenzo – Fulghesu – V.).

CH∗(M3 r H3) = Z[λ1, λ2, λ3]/(some complicated relations) .

Once again, here we see λ classes as generators.
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In all these cases the technique is the same: one expresses a stack
M as a quotient [X/G ], where X is an open subscheme of a
representation V of a linear algebraic group G (or something
closely related). If Y = V r X , we have a localization sequence

CH∗ [Y /G ] −→ CH∗ [V /G ] −→ CH∗
M −→ 0 .

Thus CH∗
M is a quotient of CH∗ [V /G ] = CH∗

BG ; the issue is
computing the relations coming from CH∗ [Y /G ]. This is usually
achieved by projectivizing, stratifying P(Y ), finding resolutions of
singularities of the closures of the strata that are geometrically
natural, and using localization techniques to compute pushforwards
of cycles from the resolutions.
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However, very few stacks are of this form. Some have
stratifications in which the strata are of this type, for different
representations of different groups. For example, consider M3; the
open substack M3 rH3 has the description as a quotient stack for
an action of GL3 on the space of quartic form in three variables; of
course this comes from the fact that every non-hyperelliptic
smooth curve of degree 4 has a canonical embedding as a quartic
in P2. But the canonical sheaf of a hyperelliptic curve is not ample.
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Another example is M 2. We have seen that M2 = [X/GL2],
where X is the space of smooth forms of degree 6 in two variables.
This has to do with the fact that every smooth curve of genus 2 is
a double cover of P1. Recall that M 2 contains a smooth divisor
∆1 consisting of curves with a separating node, that is, union of
two smooth or nodal irreducible curves of arithmetic genus 1
attached at smooth point. Every curve in M 2 r∆1 is a double
cover of P1 with a ramification divisor of degree 6. From this one
can deduce that M 2 r∆1 = [X ′/GL2], where X ′ is the space of
forms of degree 6 in two variables with at most a double zero, and
the action is given, as before, by (A · f )(x) = (detA)2f (A−1x).
The stack ∆1 also a description as a quotient stack, but it is
completely different.

In cases like these it can be very hard to patch the descriptions of
different strata in a way that is suitable for calculations.
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Let Y be a smooth closed substack of a smooth quotient stack
X ; call i : Y → X and j : X r Y → X the embeddings. There
is a localization sequence

CH∗
Y

i∗−−→ CH∗
X

j∗

−−→ CH∗(X r Y ) −→ 0 .

We would like to compute CH∗
X from CH∗

Y and
CH∗(X r Y ); we can use the sequence above to get generators
for CH∗

X , but one can not get the relations without some control
over the kernel of i∗.

A possible approach is to use higher intersection theory; this
present serious problems, because while one can often get a
reasonable description of CH∗(X r Y ; 1), getting information on
the boundary map CH∗(X r Y ; 1) → CH∗

Y is harder.
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For M 2, this strategy was carried out very recently by Eric Larson,
who proved the following result.

Theorem (E. Larson). We have

CH∗
M 2 =

Z[λ1, λ2, δ1]/(24λ
2
1−48λ2, 20λ1λ2−4δ1λ2, δ

3
1+δ21λ1, 2δ

2
1+2δ1λ1)

where δ1 = [∆1].

I would like to present an approach to the study of CH∗
M 2 due to

Andrea Di Lorenzo and myself, which has some independent
interest. There is a case in which we can can get a lot of
information from the localization sequence, using ideas that go
back to Borel, Atiyah and Segal, and have been exploited by many
authors in the contexts of equivariant cohomology, equivariant
Chow rings and equivariant cohomology.
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Let Y be a smooth closed substack of a smooth quotient stack X

as before, and take the localization sequence

CH∗
Y

i∗−−→ CH∗
X

j∗

−−→ CH∗(X r Y ) −→ 0 .

If N is the normal bundle of Y in X , then the composite

CH∗
Y

i∗−→ CH∗
X

i∗
−→ CH∗

Y is multiplication by the top Chern
class ctop(N). If ctop(N) is not a zero-divisor in CH∗

Y , then i∗ is
injective. Furthermore, the ring homomorphism
(i∗, j∗) : CH∗

X × CH∗(X r Y ) is injective (one can also
characterize its image).

Of course, if Y is Deligne–Mumford (that is, it represents a
moduli problem for object with finite automorphism groups) and Y

is its moduli space, then CHi
Y = CHi Y = 0 for i > dimY ; hence

all elements of positive degree in CH∗
Y are zero-divisors. Hence,

this can only work in the presence of object with
positive-dimensional automorphism groups.
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We embed M 2 into a vector bundle V over a stack L that is not
of the form BG , but has a smooth divisor L1 ⊆ L such that both
L1 and L rL1 are of the form BG . If N is the normal bundle of
L1 in L , then c1 N ∈ CH∗

L1 is not a zero-divisor, so the
previous idea applies. Our construction is based on an extension of
my construction of M 2 as a quotient stack.
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Let X be a curve in M 2, and call σ the hyperelliptic involution. If
X is not in ∆1 the quotient X/〈σ〉 a smooth curve of genus 0. If
X is in ∆1 then X/〈σ〉 is a nodal conic, and the projection
X → X/〈σ〉 is not flat at the separating node.

This can be fixed by giving a stack structure around the node to
the quotient X/〈σ〉, in which the node itself becomes a copy of
Bµ2; call C the resulting orbispace curve. In other word, C
acquires the structure of a twisted curve. A twisted conic will be
either a smooth curves of genus 0, or one of the nodal curves that
we have just described. Twisted conics form a smooth connected
quotient algebraic stack.
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Thus, a curve in M 2 can be described as a double cover X → C ,
where C is a twisted curve. With the standard description of
double covers we see that M 2 is equivalent to the stack of triples
(C , L, s), where C is a twisted conic, L is a line bundle of degree 3
on C , and s is a section of L⊗2 that vanishes on six distinct points.
If C is reducible we assume that the zero locus of s consists of
three points on each component of C ; in other words, L must have
degree 3/2 on each component. This can only happen thanks to
the stacky node.
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We have a stack L whose objects are pairs (C , L) as above. Call
L1 ⊆ L the divisor of pairs (C , L) in which C is singular: we
already saw that L r L1 = B GL2. One can describe L1

explicitly as a classifying stack BG for a group G of the form
(G3

m
⋊ C2)⋉G2

a
. It is possible to compute both CH∗

L1 and
CH∗(L r L1).

If N is the normal bundle of L1 in L , then c1(N) is not a
zero-divisor in CH∗

L1; this allows one to compute CH∗
L . There

is a vector bundle V on L , whose fiber over (C , L) is H0(C , L⊗2);
we have an embedding M 2 ⊆ V .
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