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On some nearly separable impact
systems

M. Pnueli and V. Rom-Kedar
&
The ISSI| team: L. Becker, S. Elliott, B. Firester, S. Gonen Cohen

Chemical reactions as a Hamiltonian impact system:
L. Lerman & VR-K SIAM J. Appl. Dyn. Syst., Vol. 11, No. 1, pp. 416—446, 2012

e

‘Soft impacts theory and multi-dimensional chem reactions:
M. Kloc & VR-K ’
SIAM J. Appl. Dyn. Syst., 13-3 (2014), pp. 1033-1059

Soft Billiards theory and non-ergodicity of such systems:
W Turaev (1997-2012), w A. Rapoport 2006-2008)




Global behavior of nonlinear Hamiltonian dynamics for n>=2 d.o.f. :

Smooth integrable Hamiltonians:
energy momentum-bifurcation diagrams & Fomenko graphs

Near integrable Hamiltonians
KAM, separatrix splittings, resonances, parabolic resonances, Arnold diffusion..

Slow fast systems
Integrable/ergodic structure of subsystems, adiabatic invariants and their “jumps”

Billiards, Soft billiards, Oscillating billiards

ergodicity and its loss by singular perturbation theory, Fermi acceleration, equilibration

Impact systems and soft impact systems

1) far from integrable
2) close to integrable
3) closeto ?



Content:

» Tri-atomic reactions and soft impact systems
* Main results I+ll

* Near vertical walls ()

* Near right angled corners (ll)

« Summary, some open problems



__Motivation-soft impact systems

Classical atom-diatom reactions:

A+ BC > AB + C

o— . O—
-0 —0
How are the reaction rates related to detailed molecular models?

The Bohn-Oppenheimer Approximation —average over the electrons motion

H(rAﬂrBﬁrC):Z

2

12

= —+U(r, —rg, 1y —Fo,1 —F.)
m.

' Potential Energy Surface (PES)

3 body problem - the classical dynamics is chaotic !

Transition State Theory (TST) -
reduce to a 1 dof system along the “reaction coordinate”



Tri-atomic co-linear reactions

A+BC—->AB+C on a line (London, Eyring, Polanyi and Sato, 1930-1960’s) :

ry s Tc

o — 00— — O

Adiabatic approximation — 2 d.o.f system:

2

Pi
H(r,ry,1) = Z =AU =1,y =1, (ry = 1) + (1 —7¢))
i—4.5.C 2M,

Reaction mass-weighted coordinates (see, e.g. Tannor 06):

q q, 2
¢ .¢—0 _ pi _ :
' % H(Qap)_Z 2 +Vr(%7q2)a qz—b(m)smﬂ(m)rgc

i=1,2

Product mass-weighted coordinates:

P
H@Q.P)=2 ~
i=1,2

2

+V,(0,0,), O =a(m)sin f(m)r,,



Mass weighted Jacobl co-ordinates:

dq; _ » _0H(g,p)
e ' op,

dp, __9V.(¢)  __OH(g,p)
dt 27 q;

£

(a) » Con (b)

Figure 1: Contour lines of the effective potential for the Hy + H reaction in the (a)
relative positions coordinates V'(ry,r2) (b) mass sealed coordinates V,.(g1, ¢2). The allowed

écules (reactant)| > A+BC>AB+C

m,m:

cos f(m) = \/

(m+mg)(mg+m)

REACTION ZONE




__Motivation-soft impact systems

A saddle in a corner

L. Lerman & V. R-K, SIAM DS 2012

H l?2 + al/local (Q) + bV (q9 8) + C farfield (q9 (C,')

A : symmetric matrix with one positive and one negative eigenvalues

V,: A billiard-like potential limiting to a corner, e.g. Ve (4.2) = exp(=a:/2) + exp((@2 — cq1) /)

g, =tanp g,

Gy



__Motivation-soft impact systems

A saddle in a corner

L. Lerman & V. R-K, SIAM DS 2012

2
H=%+a<q—qu(q—qs>+be<q;e>+cha,ﬁdd<q;e>

A : symmetric matrix with one positive and one negative eigenvalues

V,: A billiard-like potential limiting to a corner, e.g. Ve (4.2) = exp(=a:/2) + exp((@2 — cq1) /)




Qualitative behavior | — closeness results
(Kloc & RK, SIAM DS 2014)

Theorem (reflections) : ~ Given a billiard-like potential family V(q;e) and a
smooth bounded potential U(q), for a finite number of regular reflections, away

from the boundary, the trajectories of the smooth Hamiltonian:

1
H =5p2 +U(q)+V,(q;¢),

limit, smoothly (C" w.r.t. initial conditions), to the impact trajectories. Similarly,

near tangent reflections, the limit is achieved in the C° topology.

T, 1s C" close to



__Motivation-soft impact systems

Qualitative behavior Il — when does TST work?
L. Lerman & V. R-K, SIAM DS 2012

Conjecture: When /A is smaller than 6 (a known geometrical factor)

I'. ’F x\\:ﬂ-—%_; _,/ﬁ L T
- II' l‘[ :I.:rf
2.9 -_. B ._|,-*“'””‘f |[ (
'_.I } ‘H..,q___‘ \ \ '|,
Center frequency Lo = \
' :!- q"‘-a..,\_\x\‘a__ .
Saddle e. value oo
rﬁ 1 :‘ .\.'\- l\.'\-.\l\.
3

angle between W' and the
normal to the lower boundary

A =w/3, L =6,26,46,..,206, u, = (2.5,0.3).



_Motivation-soft impact systems

Qualitative behavior lll — can stable tri-atomic
periodic configurations emerge?

impact 2 smooth system:
(Kloc & RK, 2014) ==

/i

c 0 u
YES! Near symmetric p.o. of the impact system! °
(continuation in ¢ at fixed Floquet multipliers):
=0 £=0.001 e=0.01

15 15 15
1 1 & 1
05 ' 0.5 : 05
> of - =" 0 > 0
05 05 05
-1 : -1 - -1

157 8 9 10 157 8 9 10 157 8 9 10

u1 u1 1
e=0.1 e=0.2 e=0.3

15 15 15
1 1 1
05 0.5 05
> 0 == 0 = 0
05 05 05
- -1 -1

R 9 10 11 e 0 11 12 T 11 12 13




Content:

* Main results I+ll
* Near vertical walls ()
* Near right angled corners (ll)

« Summary, open problems



Mechanical examples of near-integrable impact system:

42 12

q1




C" smooth coupling tilted wall

42 (2

N
-
\\
~
\\ a1 ‘ (1
- | | ’
@A I NAN I
|
C" smooth boundary deformation coupling and deformation
02 q2
(1] []
<
~
q1 \\ !
1< < ' "
I I




Take home message:

We extend the existing perturbation theory to a much larger class of problems

We show that new phenomena emerge near singularities

— near tangencies & corners



Content:

* Near vertical walls (l)

set up (consider general separable systems)

The Impact Energy-Momentum diagram

The Hill region and its foliation

Return maps

Main results for case | : near-integrablity of simple impacts

Some conjectures and numerical simulations

* Near right angled corners (ll)

« Summary, open problems



Near vertical walls (I) : set up

Set up:

H = H(, €, Equwa b) — Hint(leplﬁ QvaQ) + ET%(qlﬁqg) + b ' %(q o qw’ E’LU)

Potential level lines:

Configuration Space - q,.q, - no wall

Phase portraits (separable dynamics)

q,-p, phase portrait ) q,-p, phase portrait . q,-p, phase portrait q,-p, phase portrait

: s
0 05 1 5 2 2 15 1 05 0 05 1 5 2 2 15 d 05 0
a,4,, a, W 9,




symmetry-preserving impacts preserve integrability

H = H( €rs €ws qw: b) — H‘i?lf(Ql;])lr QQ:Z)Q) + 67"/7‘((]13 QQ) + b ’ ‘/f)(q T qw; Eu»‘)

q¥=(0,q,) (with ¢.=0 ) preserve separability:

q,-p, phase portrait a,P, phase portrait

Plan:
» Construct Impact Energy Momentum diagram & relate to Hill regions
» Construct local return maps

« Study effects of small perturbations: deformations in wall shape and small ¢,



Near vertical walls (l) . global phase space structure

Energy momentum bifurcation diagram — smooth dynamics

EMBD of the integrable system

| 1 I |
region of allowed motion
09
normally elliptic circles
0.8+ | _ _ normally hyperbolic circle
and its separatrix |
~
07 ’
4
e
-
0.6}
— 0_5 -
04}
03
02}
01
0 rl
0.3 0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
H
Energy Surface for case 1 Energy Surface for case 2 Energy Surface for case 3
0.14 ] 05 0.5
012 ] 0.2,
" [+ X} 0.4
or 1
~ 008 =0 — 03 X — 03
Q.06 | ol o0z 0.2 ]
0.034 0.0 o1 o
0.0z 1
0
.l D, 0., 2™
2 2 2 1 T
- - i e 1
1 p . 2 1 - . 2 1 ; 2 pu - %
; — "0 e [ 2 2 q.
Py 27 ! q, Py 2 ! q, :




Near vertical walls (l) . global phase space structure

Impact Energy momentum bifurcation diagram (I-EMBD)

separable cases:

BT RIIIO MWL B EI WIS P LI WEIW Y Rl

L L . . L " . :
05 1 15 2 25 3 35 Rl




Near vertical walls “) . global phase space structure

I-EMBD for slanted wall:

« “tangent zone” dynamics

Foliation of Hill Region to (H,l) Rectangles

EMBD with Impact and Tangency Zones

35 ’,’,0\'
_ /(:;:((‘ QQQ\G
2 /éo @0
15 ,,, e\
T %0 ’\6\
& R
i S

Hill Region intersection with the wall

1 maximal | value .
—————_1 for impact, e t——
__ 1 minimal H1 value -~ L

L " 4 " " " '
-05 0 05 1 15 2 25 3



Near vertical walls “) . local phase space structure — return maps

Poincare map for perpendicular wall:

q,p, phase portrait

T

0= 0+ wo(1) - (T (J) = Atyygua(J) = 0+ 20 LD = 0+ O(1,J(H. 1))

Away from tangency - smooth twist map, with possibly isolated non-twist tori.

Non-twist torus= 77(.J)-1%(1) <0 (here occurs inside separatrix)



Near vertical walls (l) . global phase space structure +retrurn maps

a=n/2-0.01, e'=0 - EMBD a=n/2-0.01, er=0 - Configuration Space

Projection to
configuration
space

I-EMBD

0‘.& 0‘6 08 1 12 o 05 |. 1‘5
H q,
a=n/2-0.01, er=0 - Phase Space (q,,p1) a=n/2-0.01, er=o - Phase Space (qz,pz)

Projection to
phase space

w R
a=m/2-0.01, € =0 - Return Map (0,1) a=n/2-0.01, € =0 - Near Resonant Trajectory
= Projection to
__________________________________ T~ configuration
i space

Return ma
- (resonant orbit)




Near vertical walls (l) :

global+local perturbed phase space structure

Near —Integrable dynamics:

“Away” from the singularities & degeneracies (tangencies, separatrices, non-twist tori),
the return map is smooth and C'-close to the integrable twist map

fe:(ptrt

I'=T4+¢f(1,0;¢)
=0+0(,J(HI))+¢cqg(l,0;¢)

N

H) =1y (H

UN,

4
I

>

UM (H — Hi(g;,;,0))]. 6> 0,i =1,2

j=1

(8,1) - ¢ =0.01, ¢_=0.005
r w




Near vertical walls () : Near Integrability Theorems

THEOREM 2.6. (Smoothness of the return map (9)) Consider a Hamiltonian H
of the form Eq. (1) with an S3B integrable structure H;,; and a reqular wall position
(Definition 2.3), with €, = €, = 0. Fiz § > 0,p > 0, and consider a d—reqular
enerqy level H < b. Then for I in H{l(Hf’a(H)), excluding a p— interval centered
at Lign (so I € Hy '(HY(H))\N,(Lian(H))), the return map Fo : (I,0) — (I,0)
is symplectic and C" smooth, i.e. AM,(p,d) < oo such that ||O,J(H,I))|lcr <
M, (p,d). Moreover, the reqular set H{l(H?’O(H))\NP(IMR(H)) on which the return
map (9) is C" smooth is of O(1) in 9, p.

Proof: transverse sections & finite travel times

THEOREM 3.1. Consider a Hamiltonian H of the form FEq. (1) with an S3B
integrable structure H;,; and a reqular wall position. Fix 0 > 0,p > 0, let € =
(€r.€0) and ¢ = |le][, and consider a d—reqular energy level H < b. Then for
I e H{l(Hf’O(H))\Np(Iwn), for all 0, for sufficiently small ¢ the return map Fe :
(1,0) — (1,0) is symplectic, C" smooth and ¢ — C" close to the unperturbed impact
return map Fo of (9). Namely, for all (1,0) in this bounded domain, there exists
co(H,0,p) >0, such that for all ¢ € [0,20(H, 0, p)):

(14) ﬁ:{j”gm’g’ﬁ)
0=0+0O(,J(H,I))+ecg(1,0;¢)

with f,q 2m—periodic mn 0, f,qg e C".

Proof: transverse sections & finite travel times of 7 =003, ool



Near vertical walls (l) : KAM Theory applied to impact systems

COROLLARY 3.2. For fited H and d,p > 0, consider a circle which is bounded
away from separatrices, tangencies and the non-twist set, i.e. I belongs to the closed
“good” set 1y € Hz_l(Hf’O(H))\(Np(Imn)UM)(INT(H))) = S,(H.,0,p). Furthermore,
assume ©(lo, J(H, Iy))/2m is (¢, v)-Diophantine

2mm
(16) | ©(1y, J(H, 1)) — WTm > YmeZnez”

where 1 < v < $(r—1). Then, there exists 1(H, 8, p; e, v) such that for alle < ey there

TL(J(H.[()))
15 (1o)

g/c close to the unperturbed circle I = lo. Furthermore, the same result is valid for
small ¢ as long as ¢ is at least of O(\/z2).

exists a perturbed invariant circle (I-(0),8) with rotation number which is

Proof: small smooth perturbation of a twist map
+ show that for small ¢ trajectories remain in the “good set”- KAM applies

COROLLARY 3.3. Consider a Hamiltonian H of the form Eq. (1) with an S3B
integrable structure H;,:, a reqular wall position and assume the integrable impact
system has a non-degenerate impact twist. Fix & > 0,p > 0, let € = (€,,€,) and
e = |le||, and consider a d—reqular energy level H < b. Then, for sufficiently small ¢,
the complement to the set of all tori Iy belonging to the energy surface H and satisfying
the conditions of Corollary 3.2, namely the set of tori which do not necessarily persist
under ¢ perturbations is of O(\/z, p,d|Indl).

Proof: Excluding resonances and the complementary to the “good set’- KAM applies

For sufficiently small ¢ most phase space is foliated by KAM tori



Near vertical walls (l) :

Perturbation theory for the impact systems

EMBD - € =0, ¢ =0.005

int

EMBD - ¢ =0.01, ¢ _=0
T w

(&) - € =0, ¢ _=0.005
r w

(#]) - € =0, e _=0.005

“r

3 0 i 2
0

(a)) - (rﬂ.‘“, E“ﬂ

-1 0 1 2 3
0

(0.)) - ¢,=0.01, ¢, =0.005

Slanted
wall

Smooth
small
coupling

Slanted
wall and
coupling



Near vertical walls (l) : Perturbation theory for the impact systems

H =

F. =0t o8 o @plot]

t::
I' = ](Z‘Z*) = [(Z‘Z ) + / {]4 Hine + 6,-‘/’;)} |Z€ (t) dt

=TI +E,»/ {L.Vi} Lgm dt+0( / {1 Vi) Lgmiry dt+ Ole %), {

First order approximations to the perturbed twist map:
vertical wall

\- T

THEOREM 3.5. Consider a Hamiltonian H of the form (1) with an S3B integrable
structure H;py and a reqular wall position, with e, = 0. Fixz d > 0,p > 0, and consider
a 0—regular energy level H. Then for I € Hy '(HY°(H)\N,(Lian). for all 0, for
sufficiently small €., the function [ of the change in I in the return map (14) has the
following form:

; 1 T (J(1,H)) v, o
18 1,0:¢,)=— / (— ) t+ O(e,
)  fUbe)= - | o ), A o)

buuumuﬁ
<

H(, €ry Ews qw7 b) - Hint(lepHQQapQ) + 67*%‘(Q17Q2) + b : ‘/b(q - qu:; Ew)

Dynamics in a Single lteration of the Return Map - (q,,p,)

cross-section

t, 6o,
I"=1I(t;) =1 +f {I. Hin + Vi } | ) dt = I+/ +f {I.e,V2} ey dt
0 0 t

- - the cross section £
[ o of S, WSO N S Lo oL E— N W W S
_ r 2 \
=1+e {] LT} |z6m(t) dt + O(er) ) \ Stage 2 -
0 ozF Impact & Stage 1 -
reflection Dynamics until
/ the impact
\ \

I* / {]l“}| (lf+/ {]6‘}| T)(ZZL q,

I'=T1+¢f(I,0;¢)
0 =60+0(,J(HI))+eg(l,0;¢)

Fe:



Near vertical walls (l) : Perturbation theory for the impact systems

First order approximations of the perturbed twist map

Perpendicular wall with coupling perturbation:

| RO gy
f(I,0;¢,) = [ ( p2> dt + O(e,)
0 Zévn(t)

gy

(6, 1) - numerical vs. analytical results
3.05

——numerical simulation
— « analytical formula

34 L

308

3.02

301

299

2.98

29T L

2.96 -

235 4

L i i L
-3 2 1 u] 1 2

Vi(q1,92) = (g1 — q1s) - (g2 — q2s)

=0.04 A

The error term - (I — I)/e — f(I.6)

(=X =1 =



Near vertical walls (l) : Perturbation theory for the impact systems

Theorem: First order approximations of the perturbed twist map
(slanted case)

COROLLARY 3.6. For H, e, and initial conditions (I.0) which satisfy the assump-
tions of Theorem 3.1 with v > 4, an tmpact by a near perpendicular straight wall is
equivalent to the system with impact with a perpendicular wall and a small, reqular
perturbation. Moreover, the form of the change in I due to the wall tilt becomes (see
Theorem 3.5):

- - 1 Ty () o . o
(28)  f(I,8:e0) = "ol /O ({—Vl (1) + a1 - V5 ()] pz) dt + O(e,)

Z”O 1 (f)




Near vertical walls (l) : Perturbation theory for soft impact systems

Near integrable soft steep potentials:

H=H( €60 6.9, b) = Hii (g1, 15 G2, p2) + 6V (q1,q2) + b Vi(q; €y, €)

€b
01 — €0V (G2; €u)

 — Q" (g2 w))

€p

1"}%1;101'.3;((]; Ew s Gb) =

""E).e;r-p(q; Ews Eb) — exp (_

THEOREM 3.7. Consider a Hamiltonian H of the form (31) with an S3B inte-
grable structure Hipn:, a reqular wall position, and a soft billiard potential Vi, satisfying
conditions I-1V (see appendix B). Fixd > 0,p > 0, let € = (€., €, ) and e = ||€||, and
consider a 0—reqular energy level H satisfying H < H,,..(b) (see appendiz). Then
for I € HQ_I(HE’O(H))\M)(IHHI), for all 8, for sufficiently small ¢ the return map
F.: (1,0) — (1.,0) is symplectic, C" smooth and C* close to the unperturbed impact
return map Fo of (9) for any k < r. Namely, for all (I,0) in this bounded domain,
there ewists e (H, 6, p) > 0 such that for all e € [0,e}(H, 6, p)), Fe = Fo + ocr(1).

Proof: A:II reflectionAsAare transverse - by Kloc & RK (2014) the return map of the

steep soft impact is C' close to the impact one.

COROLLARY 3.9. There exists €, (€,,€.) such that for all €, < €, under the
conditions of Theorem 3.7. the soft impact return map F. is ¢ — C* close to Fo and
in the special calculable cases the first order term in ¢ of the soft impact return map
takes the corresponding forms (18), (28) or (30).

For example, we conjecture that if for a given soft potential form the error estimate
for C* closeness as in [30] is of O( *+/e,), then for ¢, < O(e*T2, 5+2) the overall error
would be of O(z) as required.

Remark:

errors coming from the
steep potential are yet to
be studied.



Near vertical walls () : Near tangencies - new phenomena

FEMBD - ¢ =0.01, ¢ =0.005

12

a=n/2-0.01, er=ﬂ - Return Map (6,1}

56k

4 —--'-_—-_—_---'-—__ i S ekl ™ i i i L

L | " L | L 1 -3 2 -1 a 1 2 3



The perturbed twist map for higher dimensions

Consider a separable n d.o.f. system + perturbations +(soft) impacts:

H = H(~ €ry Cws Qwv b) — Hént(Q: p) +€TL/;(Q’ Er) +b ‘/E)(q_qw: Cws Eb): Him‘,(q: p) - Z:;le(QI pr)
When the wall normal is aligned with one of the axis, e.g.:

qw = {((h qj’l) e R": n = 0}

The Poincare return mapto {5, = 0.5, < 0}
(near a p.o. transverse to this section)

I =
0 =0+ 25 (27 — Ap(]))

I = (]1:...:]”;1);9 — (919%1)52([) = (w—l(fl),...:wn_fl(]nfl))

ij = Lu'(!]) ) Att-r(nﬂc‘l(v]) J = J(H I) Hi?li([? ’]) = H

Perturbations=» KAM, resonances, manifold splittings, Arnold diffusion ...



MAIN MESSAGE: New class of systems to play with!
See: M. Pnueli and VRK, SIAM DS, 2018, to appear

Can now analyze n dof systems of the form:

H=H(-;6,€u,q",b) = Hint(q,p)+6.Vi(q;6.) +0-Vi(g—q"; €, €),

integrable + coupling + steep potentials close to
symmetry—respecting
impacts
Rich class of systems, amenable to perturbation theory !

Developed tools:

I-EMBD

Hill region foliations

Perturbative expressions for return maps

Still developing: return maps near tangencies & near separatrices,
Fomenko graphs, higher dimensions + more geometries,
moving boundaries, more symmetries, slow-fast cases..



Main results I: (M. Pnueli and VRK, SIAM DS, 2018, to appear)

separable Mech. Hamiltonian + Crsmooth coupling + C" deformation of a vertical wall

- -
/s /s
/
/!

Hine(q1,p1,q2,02) + €. Vi(q, q2) +0 - V(g — ¢ €w)

Result IA: Impact-Energy-Momentum-Bifurcation Diagram

—> global dynamical behavior of the system
other symmetries & symmetric impacts may be similarly studied

Theorem IB: The dynamics is “mostly” near-integrable —

- in most phase space regions it is C' close to a twist map.

In particular for sufficiently small ¢ KAM theory applies !

Theorem IC: Explicit formula for the perturbation term of the return map
[in some cases: small coupling with either perpendicular or slightly tilted straight wall ]




Theorem ID:

The same theorems apply for soft billiard potentials®
provided the soft potential is sufficiently steep!

’.‘.\\

LTS

Hint(q1,p1,q92,p2) + €. Vi(qi,q2) + b Vi(q; €, 1)

e.g.
€b
41 — Eiu(gw(QZ; E-w)

€b

, 11— ew@Q" (g2 €w
I"'Jb_,ea:p(.glf-w.f'b) — exp (ﬁfl cwQ@" (g2 u,))

* By applying results from:
"Smooth Hamiltonian systems with soft impacts”
M. Kloc & V. R-K SIAM J. Appl. Dyn. Syst., 13-3 (2014)

“Billiards: a singular perturbation limit of smooth Hamiltonian flows”
V. Rom-Kedar and D.Turaev, Chaos 22, 026102 (2012)



Content:
« Tri-atomic reactions and soft impact systems

* Near vertical walls () :

The Impact Energy-Momentum diagram
The Hill region and its foliation

Return maps and their approximations
KAM theory applies

Tangencies..

* Near right angle corners (ll):
work in progress w W L. Becker, S. Elliott, B. Firester, S. Gonen Cohen & M. Pnueli

Global dynamics : the Impact Energy-Momentum diagram for 90°, 270° corners
* Return maps
* impact from corners > study of near-integrable symplectic IEM families

*  Some conjectures and numerical simulations

« Summary, open problems



Main results ll: L. Becker, S. Elliott, B. Firester, S. Gonen Cohen, M. Pnueli and VRK,
(in writing..).
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(a) Equilibrium position (b) Impact with wall

or more generally, collection of symmetry-preserving impacting
surfaces with discontinuous behavior at the corner points.

Main result 11A:
Without coupling :
Get different Interval Exchange Map (IEM) on each level set !

inspired by very interesting results for Billiards w corners:
Zorich 2000, 2006,2018, Dragovich & Radnovic 2014-2018 , V.A. Moskvin 2018

Main result |1B:
With coupling:

A new type of “Standard families of IEM”




Near right angle corners (ll) : Global dynamics -IEMBD

{2
2

1

q1

EMBD with Impact and Tangency Zones - ©/2 corner

EMBD with Impact and Tangency Zones - 37/2 corner

impacts
in q,

Impacts
inq,,q, 3

Impacts in CH g

1,P1 q2!p2



Near corners (ll) : Local analysis — return maps - 90°

i —— ; , . 27

M) = 77y

Attmvel (Iz) -

Symplectic return map to %, : (l,,0,) = F(l,,0,)

 The return time T; = T; — At;_trqve; 10 2, depends only on the energy e,

27

TQ([Q)Tl(Il) +k(1,0:)A05(12)  for k bounces from the g, wall

Hence: Oy = Oy +

Oy = 05 + O(I) + 27K (1) + Op(r.00) .10 A0 (1)




Near corners (ll) : Local analysis — return maps - 90°

. 2
Aez (Il) = T}_)Attravel(]i)

q1

i l,
By = 05 + 9([) + 2’/'{'[{([) + 5k([792):[&’(1)A95(12)
Where:
wall
[
[T ) T R K(l)+1 K(1)
o=z { }(Iz)} TSN { }(IQ)J bounces bounces
] 6,
A (L) = 27(1 — %g)

K (I) 92 S (Qg(qga”:IQ):Qg(qéuall:IQ) o 9(1))
K()+1 0 € (03 (g2, 1) — O(1), 05 (g 1))

k(I 92)




Ny =By +O(I) + 21K (I) + Ok(1.0.).5 (A0S (I2)

For a fixed level set —

an interval exchange map
with two intervals

= rotation on a circle




Near corners (ll) : Local analysis — return maps - 270°

upper wall

wiocht

N

1) The travel time between X, s depends on the energy e; only

2) The gained phase in 6, is constant on intervals —
it only depends on the number of collisions with the step!

= Get interval exchange maps!



Near corners (ll) : Local analysis — return maps - 270°

~ 6, + %f’l( 1) reflect from right wall

0o + Tf{}g)Tl(I 1)+ E(I,0:)A05(1)  reflect k times from upper wall

k(1,8,)=K(l)+1 or K(l)

(qina.zt (€] )*é qil)'n(l.'l‘ (6’2)\
--------------- > — ____21
Z al \ EMBD with Impact and Tangency Zones - 37/2 corner
1
________________ I
A

l, l,
A B c D E E A c B D | 2

+

R k (k 1) k+1 k R (k 1) q4,P1 q2,P2
6, 6,




Near corners (ll) :

Local analysis — return maps - 270°

92 + 27T1 reflect from right wall
N 27 T 29 :wall JAN AP rave - .
Oy = 02 + th + = ZT(:éff ) { 1152 l} + 27K reflect K times from upper wall
27T (e2:q8 ) [ At1_trave . ; :
9 + ZTTl + = ET(:(ZES) ) { tljf; l} + AOY + 21l reflect K1 times from upper wall
_ e EID e (e ie)
K (E’ e wall ua[[) Tl(el) Tl (€ QE (”) - Atl*tral’f’[(el QT(IH) i~ Z*f/-‘ -------------- 2 > S
1 €2: G o o T (€ . uall) - T ( . u-all) 1’ :
2(€2: 45 2(€2: 5 3 e 3| !
“:11 ,,,,,,,,,,,,,,,,,,
=
U1 R Uy
21Ty [ Ati—tra : 21Ty [ Ati_trave
A= A1 — AL — ]
(Tz(('z) { T } . © Tr(e) { T, })
| I
2 > 2
A B C D E E A c’ B’ D
|
| I R —
Usi R U Ugy U. U, R U.q
0, 0,

IT, = [ABCDE]

I, = [EACBD]



Near corners (ll) : Local analysis — return maps - 270°

92 + QWTl reflect from right wall
— wall
Oy = < Oy + QWTl + QﬁTén(:(z 6’3)2 ) {Atlﬁ““d } + 27K reflect K times from upper wall
\92 4 27;51 4 QﬂTQES;?egM”) {Atl travel } + AL+ 2K reflect K-+1 times from upper Wall

/\ - 27Tf2 {Afl—jravel} ) AOQ o — A@é _ 27rT2 {Afl—frm'cl}

T5(es) T, Ts(e2) T,
l, > 1,
A B c D E E A c B D
[r— | I R —
Usm R U, Uicsq Ui Uy R Uyt
0, 0,

IT, = [ABCDE] > I, = [EACBD]



Near corners (ll) : Local analysis — return maps - 270°

Here: the size and number of interval changes on an energy surface:

EMBD with Impact and Tangency Zones - 3#/2 corner

N=5, k=0,1
N=5, k=1,2....

s Impacts

N=5 , k=kmax(h),kmax(h)+1

H



Small coupling/deformations =
Symplectic perturbation of FIEM transformations:

0 = O+w.(I)+eg(d), 0ecTu)
I' = I+ef(d)

E.g. : The Standard Map as a FIEM with N=2-intervals

g(6) = 0, f(6) =sind

I 00,27 — 1)
wa(l) = ., { ., g(0

= 0,
I'—27 0e2n—1,2m) ) |
f0") = sind
wall) = QD)
Ao(I) = A2 4+ BAL sin(1)
Simulations: d=5, different permutations, e.g 0 0 0 01
0 0 1 0 1
Q = 0O -1 0 0 1
o 0 0 0 1

-1 -1 -1 —1 (

p—



ABCDE to EACBD ¢ = 0.1 no of iterations= 10000
ABCDE to EDCBA ¢ = 0.1 no of iterations= 10000
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ABCDE to EACBD ¢ = 0.1 no of iterations= 10000
ABCDE to EDCBA ¢ = 0.1 no of iterations= 10000

Do we get any invariant curves?

2
=)

Seems to depends on the permutation sequence.

= ABCDE to EACBD ¢ = 0.01 no 10000
5
5
| AEES S eSS et e e e s e e =)
S — m—— s — [ 4 B —
L 4
L] i
| 35
|
. RS TR i 5
ol
| - — — - - -
L 25 "
4

ABCDE to EDCBA ¢ = 0.1 no of iterations= 2000000




Near corners (ll) :-Numerical return map for the perturbed step dynamics

Multrun 1 - (6,1)
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Summary:

We extend the existing perturbation theory to a much larger class of problems
We show that new phenomena emerge near singularities — tangencies & corners
We construct FIEM — families of interval exchange maps

their unperturbed dynamics is NOT the standard Liuoville-Arnold integrable !
Signal? Applications?

1< \es - 37/2 corner
S

NV

q1,p1 q2!p2
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On some nearly separable impact systems - Talk by Vered Rom-Kedar

Lecture notes (Ori S. Katz)

October 23, 2018

Abstract

Near-integrability is usually associated with smooth small perturbations of smooth integrable systems. We
show that studying integrable mechanical Hamiltonian flows with impacts that respect the symmetries of the
integrable structure provide an additional rich class of non-smooth systems that can be studied by perturbation
methods. Moreover, the analysis can be extended to systems with soft steep potentials that limit to the impact
systems. For example, for some of these systems, we show that KAM theory may be applied, proving that
for a large portion of phase space the perturbed motion is conjugate to rotations on a torus [1]. On the other
hand, other simple impact systems have inherently non-rotational motion — we show cases in which the motion
is conjugate to geodesic flow on a flat torus with several handles [2].

[1] M. Pnueli & V. Rom-Kedar “On near integrability of some impact systems”, SIAM-DS, 2018 to appear.

[2] L. Becker, S. Elliott, B. Firester, S. Gonen Cohen, M. Pnueli & V. Rom-Kedar, in preparation.

1 Lecture notes

Work by M. Pnueli and V. Rom-Kedar, with the ISSI team: Becker, Elliot, Firester and Gonen Cohen.

Impact systems - particles moving in a domain with a Hamiltonian vector field, and a boundary with elastic
reflections.

Soft impact systems - at the boundary, instead of a rigid wall there is a very steep potential.

Why do we care about these systems? There are very few systems in which we know how initial conditions
develop in a general system. We know about integrable systems, and slow-fast systems. Billiards, soft billiards and
impact systems provide a widening of the classes of systems for which we can gain some global knowledge of the
phase space.

Initial motivation - chemical reactions. The classical approximation (Bohn-Oppenheimer approximation) pro-
duces a 3-body problem, i.e. the classical dynamics is chaotic.

Transition State Theory - reduce to 1D dynamics.

Tri-atomic co-linear reactions - the adiabatic approximation produces a system that can be written as a 2 degree
of freedom system. This reduced system, in mass weighted Jacobi coordinates, is a type of impact system, with
boundaries with a very steep potential and a bulk with a non-steep potential. This is a general property of molecular
dynamics, the steep potential related to the repulsion between atoms when they are very close together.

This motivated the “A saddle in a corner” work, done with L. Lerman. It is a model with a steep potential
along a corner similar to a billiard in a corner, and a saddle point potential inside the corner. This simple model
produces trajectories similar to those gained by more involved models, but it is simple enough to derive some global
properties.

Reflections theorem - an analogy between a steep potential and an impact system.

One type of qualitative behavior is a derivation of when does TST work - when the unstable manifold does not
tangle back. In this simple model, it is possible to give geometric criteria. This qualitative understanding is difficult
to get from general potentials.

Another qualitative result from the analogy between a steep potential and an impact system - can stable tri-
atomic periodic configurations emerge? Kloc and RK - 2014. The answer is yes.

Backing up to look at simpler problems, we next asked, when can we obtain nearly integrable impact systems?

A mechanical example - a mass in a square box connected by springs to the sides. This is a separable, 2 degree
of freedom impact system. To add impacts, we can add a narrow third dimension so that when the mass hits the
vertical wall there is an impact. If the impact wall is completely vertical, the system is still completely separable,
but it is no longer smooth. Perturbing the system in various ways - non-vertical wall, non-perfect springs, etc. -
how do we analyze this system? It’s not a smooth system, so naively KAM theory would not work.



Thus, we consider a 2D impact system with a Hamiltonian with potential and a wall. If the impact wall respects
the symmetry of the underlying potential, the system remains separable.

H = Hip (q1,01,2,02) + € Ve (q1,02) + - Vi (g — ¢"; €w)

where Hj,,; is an integrable hamiltonian, V. is the coupling between the two degrees of freedom and V}, is the impact
potential.

Taking €, = 0, it turns out that symmetry-preserving impacts preserve integrability.

What happens when you perturb such a system?

The projection tool we use is the energy momentum bifurcation diagram, x axis is H and the y axis is the
momentum /. So a vertical line on the diagram corresponds to the energy surface upon which the dynamics occur
and a single regular point corresponds to a regular level set of the constants of motion, which can be, in the compact
case, a torus or several tori. In the considered case, one of the degrees of freedom has a double-well potential, and
there is a separatrix on the diagram describing the transition from two separated components of the level set to one
connected component.

Adding a wall, can plot the impact energy momentum bifurcation diagram. In the separable cases (perpendicular
wall), there will be lines of tangency dividing the diagram into an impact regime and a non-impact regime. When
the wall isn’t perpendicular, the line of tangency blows up into a region. There is still a region of non-impact tori
and a region of regular impact tori, but this time there is a region of tangency.

To see what happens, we draw a Poincare map. In the separable case, the map can be explicitly written.

Also, when you are away from the tangency, this map is a smooth twist map, with possibly isolated non-twist
tori, even when impacts occur.

When adding a perturbation to this map, obtain a perturbed twist map - this claim can be proven! Need to show
that the perturbed map is close to the non-perturbed one. Thus, two theorems are formulated and proven about
the smoothness of the return map. As soon as this is achieved, KAM can be implemented and shown to hold in this
system. Moreover, we show that for a small enough e, most of phase space is foliated by KAM tori. Moreover, we
can find an analytic formula for the perturbation of the twist map by use of a Melnikov-type calculation, showing
that perturbed orbits are close to un-perturbed ones far from the collision, and near the collision there is a weak
coupling.

Indeed, there is a nice agreement between the analysis and numerics.

What if we switch the wall to a steep potential - soft impact systems?

We can show that it will work the same way.

What happens near the tangency? There are very peculiar orbits that are still being studied. This could be the
new ingredient that emerges from impact systems.

What if we add degrees of freedom - higher dimensions d = n?

The return map can be written in the separable case, to obtain 2n — 2 return equations. Would KAM be
applicable? Arnold diffusion? This is TBD.

Main message - this is a rich class of systems that is amenable to perturbation theory of the form

H=Hiyp (0.9) + Vi (@) +0- Vo (¢ — ¢"s €w)

Near right-angle corners: work with L. Becker, S. Elliott, B. Firester, S. Gonen Cohen, M. Pnueli and VRK (in
preparation).

Consider a mass in a 2D square connected by aligned springs to the walls, with a corner or a step. If the step
is aligned to the axes, the separability is not broken.

Without coupling, we get different interval exchange maps (IEM) on each level set. With coupling, obtain a
new type of standard families of IEM.

Understanding the system, we can differentiate between 90 degree corners and 270 degree corners.

90 degree system - The return time depends on the energy in each degree of freedom. Hence we obtain an IEM
with two intervals - this is equivalent to a rotation (on a smaller torus) - therefore adding perturbation we’d expect
to see similar behavior (TBD).

270 degree system (step) - There are a few options. Below the step, the travel time can depend only on the
energy in the first degree of freedom times the frequency in the second degree of freedom. Above the step, the gained
phase depends only on the number of collisions with the step. Thus we obtain three intervals. It’s a non-trivial
map, meaning that for most of the length of these interval, we will get minimal dynamics. There are works that
show that these IEM can be embedded onto barriers in action-angle coordinates.



This means that in the impact regime, the return map is not conjugate to a rotation but to motion on a torus
with at least two handles. Can ask, is this integrable or not? Energy is conserved, but dynamics are not on Liouville
tori. Here, the size and number of interval exchanges change with energy level sets.

Adding small coupling or deformations, this is a symplectic perturbation of FIEM (families of IEM) transfor-
mations.

The question we ask and have not yet answered is, do we get invariant curves similar to KAM?

2 Questions:

- Did you consider chemical reaction with transfer of electron instead of atoms, granting a limit of one neglibible
mass? No, this would be a great problem, something to be done.

- Is it possible to find acceleration modes? Or would you need a vibration of the walls? Energy is conserved so
there can be no acceleration.



