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Global behavior of nonlinear Hamiltonian dynamics for n>=2 d.o.f. :

Smooth integrable Hamiltonians:
energy momentum-bifurcation diagrams & Fomenko graphs

Near integrable Hamiltonians
KAM, separatrix splittings, resonances, parabolic resonances, Arnold diffusion..

Slow fast systems
Integrable/ergodic structure of subsystems, adiabatic invariants and their “jumps”

Billiards, Soft billiards, Oscillating billiards 
ergodicity and its loss by singular perturbation theory, Fermi acceleration, equilibration

Impact systems and soft impact systems
1)   far from integrable
2)  close to integrable
3)  close to ?



Content:

• Tri-atomic reactions and soft impact systems 

• Main results I+II

• Near vertical walls (I) 

• Near right angled corners   (II)

• Summary, some open problems 



Classical atom-diatom reactions:
A + BC                             Æ AB + C   

How are the reaction rates related to detailed molecular models?

The Bohn-Oppenheimer Approximation –average over the electrons motion

Potential Energy Surface (PES)

3 body problem - the classical dynamics is chaotic !

Transition State Theory (TST) -
reduce to a 1 dof system along the “reaction coordinate”
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Tri-atomic co-linear reactions

A+BCÆAB+C  on a line (London, Eyring, Polanyi and Sato, 1930-1960’s) :

Adiabatic approximation – 2 d.o.f system:

Reaction mass-weighted coordinates (see, e.g. Tannor 06):

Product mass-weighted coordinates:
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A saddle in a corner
L. Lerman & V. R-K, SIAM DS 2012

A  :  symmetric matrix with one positive and one negative eigenvalues

Vb:  A billiard-like potential  limiting to a corner, e.g. 

e=0

);();()(
2

2

ee qcVqbVqaVpH farfieldblocal ��� 

_Motivation-soft impact systems                                                                                   _    



A saddle in a corner
L. Lerman & V. R-K, SIAM DS 2012
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A  :  symmetric matrix with one positive and one negative eigenvalues

Vb:  A billiard-like potential  limiting to a corner, e.g. 

e=0e=0.05
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Te
Te  is Cr close to T0

Theorem (reflections) : ~ Given a billiard-like potential family V(q;e) and a 

smooth bounded potential U(q), for  a finite number of regular reflections, away 

from the boundary, the trajectories of the smooth Hamiltonian:

limit, smoothly (Cr w.r.t. initial conditions), to the impact  trajectories. Similarly, 

near tangent reflections, the limit is achieved in the C0 topology.
proof is very similar to the billiard case  [Rapoport, RK  and Turaev, Com Math Phys 07] 

Qualitative behavior I – closeness results
(Kloc & RK, SIAM DS 2014)
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Qualitative behavior II – when does TST work?
_Motivation-soft impact systems                                                                                   _    

L. Lerman & V. R-K, SIAM DS 2012

Conjecture: When w/l is smaller than d (a known geometrical factor) 

Center frequency
------------------------------
Saddle e. value

angle between Wu and the 
normal to the lower boundary



impact Æ smooth system:
(Kloc & RK, 2014)

YES!  Near symmetric p.o. of the impact system!
(continuation in e at fixed Floquet multipliers):

_Motivation-soft impact systems                                                                                   _    

Qualitative behavior III – can stable tri-atomic 
periodic configurations emerge?



Content:

• Tri-atomic reactions and far from integrable soft impact systems

• Main results I+II

• Near vertical walls (I) 

• Near right angled corners   (II)

• Summary, open problems 



Mechanical examples of near-integrable impact system:                                              



Cr smooth coupling                                   tilted wall

Cr smooth boundary deformation              coupling and deformation                                           



Take home message:

We extend the existing perturbation theory to a much larger class of problems

We show that new phenomena emerge near singularities

– near tangencies & corners



Content:

• Main results I+II

• Tri-atomic reactions and soft impact systems

• Near vertical walls (I)
• set up (consider general separable systems)

• The Impact Energy-Momentum diagram

• The Hill region and its foliation

• Return maps

• Main results for case I : near-integrablity of simple impacts

• Some conjectures and numerical simulations

• Near right angled corners   (II)

• Summary, open problems 



Set up:

Potential level lines:

Phase portraits (separable dynamics)

Near vertical walls (I) : set up 



symmetry-preserving impacts preserve integrability

qw=(0,q2) (with er =0 ) preserve separability:

Plan:

• Construct Impact Energy Momentum diagram & relate to Hill regions

• Construct local return maps

• Study effects of small perturbations: deformations in wall shape and small er

Near vertical walls (I) : set up 



Energy momentum bifurcation diagram – smooth dynamics
Near vertical walls (I) : global phase space structure                                                                                          



Impact Energy momentum bifurcation diagram (I-EMBD) 
separable cases:

Impact

No impact

Near vertical walls (I) : global phase space structure                                                                                          

H=H1tan+wII=Itan

H=H1sep+wI



I-EMBD for slanted wall:

• “tangent zone” dynamics

Near vertical walls (I) : global phase space structure                                                                                          



Poincare map for perpendicular wall:

Away from tangency - smooth twist map, with possibly isolated non-twist tori.

Non-twist torusÎ (here occurs inside separatrix)

Near vertical walls (I) : local phase space structure – return maps                                                                     



I-EMBD

Return map 

Projection to 
configuration 
space

Projection to
phase space

Projection to 
configuration 
space 
(resonant orbit) 

Near vertical walls (I) : global phase space structure +retrurn maps                                                                   



Near –Integrable dynamics:

“Away” from the singularities & degeneracies (tangencies, separatrices, non-twist tori), 
the return map is smooth and Cr-close to the integrable twist map

Near vertical walls (I) : global+local perturbed phase space structure                                                               



Proof: transverse sections & finite travel times

Proof: transverse sections & finite travel times of 

Near vertical walls (I) : Near Integrability Theorems 



Proof: small smooth perturbation of a twist map 
+ show that for small e trajectories remain in the “good set”- KAM applies

Near vertical walls (I) : KAM Theory applied to impact systems

Proof: Excluding resonances and the complementary to the “good set”- KAM applies

For sufficiently small e most phase space is foliated by KAM tori 



Slanted 
wall

Smooth 
small 
coupling

Slanted 
wall and 
coupling

Near vertical walls (I) : Perturbation theory for the impact systems



First order approximations to the perturbed twist map:
vertical wall 

Near vertical walls (I) : Perturbation theory for the impact systems



First order approximations of the perturbed twist map

Perpendicular wall with coupling perturbation:

Slanted wall qw=(ew q2 ,q2) with no coupling perturbation (in rotated coordinates):

Combination of both: 

Near vertical walls (I) : Perturbation theory for the impact systems



Theorem: First order approximations of the perturbed twist map 
(slanted case)

Near vertical walls (I) : Perturbation theory for the impact systems



Near integrable soft steep potentials: 

Near vertical walls (I) : Perturbation theory for soft impact systems

Proof: All reflections are transverse Æ by Kloc & RK (2014) the return map of the 
steep soft impact is Cr close to the impact one.

Remark:
errors coming from the 
steep potential are yet to 
be studied.



Near vertical walls (I) : Near tangencies - new phenomena                                                                   



The perturbed twist map for higher dimensions

When the wall normal is aligned with one of the axis, e.g.:

Consider a separable n d.o.f. system + perturbations +(soft) impacts:

The Poincare return map to                             
(near a p.o. transverse to this section) 

PerturbationsÎ KAM, resonances, manifold splittings, Arnold diffusion …

Near vertical walls (I) : simple generalizations & extensions                                                                   



MAIN MESSAGE: New class of systems to play with!
See: M. Pnueli and VRK, SIAM DS, 2018, to appear

Can now analyze n dof systems of the form:

integrable +    coupling  +     steep potentials close to
symmetry–respecting

impacts
Rich class of systems, amenable to perturbation theory !

Developed tools:
I-EMBD
Hill region foliations
Perturbative expressions for return maps

Still developing:   return maps near tangencies & near separatrices, 
Fomenko graphs, higher dimensions + more geometries,
moving boundaries, more symmetries,  slow-fast cases..

Near vertical walls (I) :  Global IMBD, return map, KAM, soft potentials, summary



Main results I: (M. Pnueli and VRK, SIAM DS, 2018, to appear)

separable Mech. Hamiltonian   +   Cr smooth coupling  + Cr deformation of a vertical wall

Result IA: Impact-Energy-Momentum-Bifurcation Diagram
Æ global dynamical behavior of the system

other symmetries & symmetric impacts may be similarly studied

Theorem IB: The dynamics is “mostly” near-integrable –

- in most phase space regions it is  Cr close to a twist map.

In particular for sufficiently small e KAM theory applies !

Theorem IC: Explicit formula for the perturbation term of the return map
[in some cases: small coupling with either perpendicular or slightly tilted straight wall ]



Theorem ID: 

The same theorems apply for soft billiard potentials*
provided the soft potential is sufficiently steep!

e.g.

* By applying results from:
”Smooth Hamiltonian systems with soft impacts” 
M. Kloc & V. R-K SIAM J. Appl. Dyn. Syst., 13-3 (2014)

“Billiards: a singular perturbation limit of smooth Hamiltonian flows”
V. Rom-Kedar and D.Turaev, Chaos 22, 026102 (2012)



Content:

• Tri-atomic reactions and soft impact systems

• Near vertical walls (I) :
• The Impact Energy-Momentum diagram

• The Hill region and its foliation

• Return maps and their approximations

• KAM  theory applies

• Tangencies..

• Near right angle corners   (II):
work in progress w W L. Becker, S. Elliott, B. Firester, S. Gonen Cohen & M. Pnueli

• Global dynamics : the Impact Energy-Momentum diagram for  90o, 270o corners 

• Return maps

• impact from corners Æ study of near-integrable symplectic IEM families

• Some conjectures and numerical simulations

• Summary, open problems 



Main results II:               L. Becker, S. Elliott, B. Firester, S. Gonen Cohen, M. Pnueli and VRK,
(in writing..).

or more generally, collection of symmetry-preserving impacting
surfaces with discontinuous behavior at the corner points. 

Main result IIA:
Without coupling :
Get different Interval Exchange Map (IEM) on each level set !
inspired by very interesting results for Billiards w corners:

Zorich 2000, 2006,2018, Dragovich & Radnovic 2014-2018 , V.A. Moskvin 2018

Main result IIB:
With coupling:

A new type of  “Standard families of IEM”



I2

q1,p1 q2,p2

Near right angle corners (II) :  Global dynamics   - IEMBD                                                                      

I2

q1,p1 q2,p2



Σ1

Symplectic return map to  S1 :  (I2,q2) Æ F(I2,q2)

• The return time ෩𝑇𝑖 = 𝑇𝑖 − ∆𝑡𝑖−𝑡𝑟𝑎𝑣𝑒𝑙 to Si depends only on the energy ei

Hence:                                                                   for k bounces from the q2 wall                  

………

Where:

Near corners (II) :  Local analysis – return maps   - 90o



I2

wall
K(I)+1                 K(I)

bounces bounces
q2

Σ1

Where:

Near corners (II) :  Local analysis – return maps   - 90o



I2

q2

Near corners (II) :  Local analysis – return maps   - 90o

For  a fixed level set –

an interval exchange map
with two intervals

= rotation on a circle



Σ1−

Σ1+ Σ1

1) The travel time between Si s depends on the energy ei only

2) The gained phase in  q2 is constant on intervals –
it only depends on the number of  collisions with the step!

Î Get interval exchange maps!

Σ1

Near corners (II) :  Local analysis – return maps    - 270o                                                                                                              

Σ𝟐−



I2

q1,p1 q2,p2

k(I,q2)=K(I)+1 or K(I)

I2
A         B                    C                   D     E

R          k       (k+1)
q2

I2
E’   A’             C’                B’                 D'

k+1         k       R       (k+1)
q2

Near corners (II) :  Local analysis – return maps   - 270o



I2
A         B                      C                  D     E

Uk+1 R Uk Uk+1
q2

I2
E’   A’             C’                   B’                    D'

Uk+1 Uk R Uk+1
q2

Near corners (II) :  Local analysis – return maps   - 270o                                                                                                            

P0 = [ABCDE]                        Æ P1 = [EACBD]

Uk+1 R Uk



I2
A         B                      C                  D     E

Uk+1 R Uk Uk+1
q2

I2
E’   A’             C’                   B’                    D'

Uk+1 Uk R Uk+1
q2

Near corners (II) :  Local analysis – return maps   - 270o                                                                                                            

P0 = [ABCDE]                        Æ P1 = [EACBD]

Uk+1 R Uk

In the impact region, the unperturbed map is NOT conjugate to a rotation!

It is conjugate to motion on torus with at least 2 handles!
see the IEM works and works on billiards w corners

– Zorich 2000-2018, Dragovich & Radnovic 2014 , V.A. Moskvin 2018



Here: the size and number of interval changes  on an energy surface:

N=2

N=5 , k=0,1
N=5 , k=1,2 ….

N=5 , k=kmax(h),kmax(h)+1

N=2

Near corners (II) :  Local analysis – return maps   - 270o



Small coupling/deformations Î
Symplectic perturbation of FIEM transformations:

E.g. : The Standard Map as a FIEM with N=2-intervals

Simulations: d=5, different permutations, e.g

Near corners (II) :  Local analysis – return maps   - 270o +small perturbations?                                





Q: Do we get any invariant curves?

Seems to depends on the permutation sequence.



Near corners (II) :Numerical return map for the perturbed step dynamics               



Summary:

We extend the existing perturbation theory to a much larger class of problems

We show that new phenomena emerge near singularities – tangencies & corners

We construct FIEM – families of interval exchange maps

their unperturbed dynamics is NOT the standard Liuoville-Arnold integrable !
Signal? Applications?

I2

q1,p1 q2,p2

I2

q1,p1 q2,p2
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On some nearly separable impact systems - Talk by Vered Rom-Kedar

Lecture notes (Ori S. Katz)

October 23, 2018

Abstract

Near-integrability is usually associated with smooth small perturbations of smooth integrable systems. We
show that studying integrable mechanical Hamiltonian flows with impacts that respect the symmetries of the
integrable structure provide an additional rich class of non-smooth systems that can be studied by perturbation
methods. Moreover, the analysis can be extended to systems with soft steep potentials that limit to the impact
systems. For example, for some of these systems, we show that KAM theory may be applied, proving that
for a large portion of phase space the perturbed motion is conjugate to rotations on a torus [1]. On the other
hand, other simple impact systems have inherently non-rotational motion – we show cases in which the motion
is conjugate to geodesic flow on a flat torus with several handles [2].

[1] M. Pnueli & V. Rom-Kedar “On near integrability of some impact systems”, SIAM-DS, 2018 to appear.
[2] L. Becker, S. Elliott, B. Firester, S. Gonen Cohen, M. Pnueli & V. Rom-Kedar, in preparation.

1 Lecture notes

Work by M. Pnueli and V. Rom-Kedar, with the ISSI team: Becker, Elliot, Firester and Gonen Cohen.
Impact systems - particles moving in a domain with a Hamiltonian vector field, and a boundary with elastic

reflections.
Soft impact systems - at the boundary, instead of a rigid wall there is a very steep potential.
Why do we care about these systems? There are very few systems in which we know how initial conditions

develop in a general system. We know about integrable systems, and slow-fast systems. Billiards, soft billiards and
impact systems provide a widening of the classes of systems for which we can gain some global knowledge of the
phase space.

Initial motivation - chemical reactions. The classical approximation (Bohn-Oppenheimer approximation) pro-
duces a 3-body problem, i.e. the classical dynamics is chaotic.

Transition State Theory - reduce to 1D dynamics.
Tri-atomic co-linear reactions - the adiabatic approximation produces a system that can be written as a 2 degree

of freedom system. This reduced system, in mass weighted Jacobi coordinates, is a type of impact system, with
boundaries with a very steep potential and a bulk with a non-steep potential. This is a general property of molecular
dynamics, the steep potential related to the repulsion between atoms when they are very close together.

This motivated the “A saddle in a corner” work, done with L. Lerman. It is a model with a steep potential
along a corner similar to a billiard in a corner, and a saddle point potential inside the corner. This simple model
produces trajectories similar to those gained by more involved models, but it is simple enough to derive some global
properties.

Reflections theorem - an analogy between a steep potential and an impact system.
One type of qualitative behavior is a derivation of when does TST work - when the unstable manifold does not

tangle back. In this simple model, it is possible to give geometric criteria. This qualitative understanding is difficult
to get from general potentials.

Another qualitative result from the analogy between a steep potential and an impact system - can stable tri-
atomic periodic configurations emerge? Kloc and RK - 2014. The answer is yes.

Backing up to look at simpler problems, we next asked, when can we obtain nearly integrable impact systems?
A mechanical example - a mass in a square box connected by springs to the sides. This is a separable, 2 degree

of freedom impact system. To add impacts, we can add a narrow third dimension so that when the mass hits the
vertical wall there is an impact. If the impact wall is completely vertical, the system is still completely separable,
but it is no longer smooth. Perturbing the system in various ways - non-vertical wall, non-perfect springs, etc. -
how do we analyze this system? It’s not a smooth system, so naively KAM theory would not work.
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Thus, we consider a 2D impact system with a Hamiltonian with potential and a wall. If the impact wall respects
the symmetry of the underlying potential, the system remains separable.

H = Hint (q1, p1, q2, p2) + ϵrVr (q1, q2) + b · Vb

(

q − qb; ϵw
)

where Hint is an integrable hamiltonian, Vr is the coupling between the two degrees of freedom and Vb is the impact
potential.

Taking ϵr = 0, it turns out that symmetry-preserving impacts preserve integrability.
What happens when you perturb such a system?
The projection tool we use is the energy momentum bifurcation diagram, x axis is H and the y axis is the

momentum I. So a vertical line on the diagram corresponds to the energy surface upon which the dynamics occur
and a single regular point corresponds to a regular level set of the constants of motion, which can be, in the compact
case, a torus or several tori. In the considered case, one of the degrees of freedom has a double-well potential, and
there is a separatrix on the diagram describing the transition from two separated components of the level set to one
connected component.

Adding a wall, can plot the impact energy momentum bifurcation diagram. In the separable cases (perpendicular
wall), there will be lines of tangency dividing the diagram into an impact regime and a non-impact regime. When
the wall isn’t perpendicular, the line of tangency blows up into a region. There is still a region of non-impact tori
and a region of regular impact tori, but this time there is a region of tangency.

To see what happens, we draw a Poincare map. In the separable case, the map can be explicitly written.
Also, when you are away from the tangency, this map is a smooth twist map, with possibly isolated non-twist

tori, even when impacts occur.
When adding a perturbation to this map, obtain a perturbed twist map - this claim can be proven! Need to show

that the perturbed map is close to the non-perturbed one. Thus, two theorems are formulated and proven about
the smoothness of the return map. As soon as this is achieved, KAM can be implemented and shown to hold in this
system. Moreover, we show that for a small enough ϵ, most of phase space is foliated by KAM tori. Moreover, we
can find an analytic formula for the perturbation of the twist map by use of a Melnikov-type calculation, showing
that perturbed orbits are close to un-perturbed ones far from the collision, and near the collision there is a weak
coupling.

Indeed, there is a nice agreement between the analysis and numerics.
What if we switch the wall to a steep potential - soft impact systems?
We can show that it will work the same way.
What happens near the tangency? There are very peculiar orbits that are still being studied. This could be the

new ingredient that emerges from impact systems.
What if we add degrees of freedom - higher dimensions d = n?
The return map can be written in the separable case, to obtain 2n − 2 return equations. Would KAM be

applicable? Arnold diffusion? This is TBD.
Main message - this is a rich class of systems that is amenable to perturbation theory of the form

H = Hint (q, p) + ϵrVr (q) + b · Vb

(

q − qb; ϵw
)

Near right-angle corners: work with L. Becker, S. Elliott, B. Firester, S. Gonen Cohen, M. Pnueli and VRK (in
preparation).

Consider a mass in a 2D square connected by aligned springs to the walls, with a corner or a step. If the step
is aligned to the axes, the separability is not broken.

Without coupling, we get different interval exchange maps (IEM) on each level set. With coupling, obtain a
new type of standard families of IEM.

Understanding the system, we can differentiate between 90 degree corners and 270 degree corners.
90 degree system - The return time depends on the energy in each degree of freedom. Hence we obtain an IEM

with two intervals - this is equivalent to a rotation (on a smaller torus) - therefore adding perturbation we’d expect
to see similar behavior (TBD).

270 degree system (step) - There are a few options. Below the step, the travel time can depend only on the
energy in the first degree of freedom times the frequency in the second degree of freedom. Above the step, the gained
phase depends only on the number of collisions with the step. Thus we obtain three intervals. It’s a non-trivial
map, meaning that for most of the length of these interval, we will get minimal dynamics. There are works that
show that these IEM can be embedded onto barriers in action-angle coordinates.
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This means that in the impact regime, the return map is not conjugate to a rotation but to motion on a torus
with at least two handles. Can ask, is this integrable or not? Energy is conserved, but dynamics are not on Liouville
tori. Here, the size and number of interval exchanges change with energy level sets.

Adding small coupling or deformations, this is a symplectic perturbation of FIEM (families of IEM) transfor-
mations.

The question we ask and have not yet answered is, do we get invariant curves similar to KAM?

2 Questions:

- Did you consider chemical reaction with transfer of electron instead of atoms, granting a limit of one neglibible
mass? No, this would be a great problem, something to be done.

- Is it possible to find acceleration modes? Or would you need a vibration of the walls? Energy is conserved so
there can be no acceleration.
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