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-
Homogenization Theory of Hamilton-Jacobi Equation

Assume H(p, x) € C(R" x R") is uniformly coercive in the p variable and
periodic in the x variable.

For each ¢ > 0, let u € C(R" x [0,00)) be the viscosity solution to the
following Hamilton-Jacobi equation

{u§+ A(Du2) =0 in B x (0,00), M
uf(x,0) = g(x) on R".
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Homogenization Theory of Hamilton-Jacobi Equation

Assume H(p, x) € C(R" x R") is uniformly coercive in the p variable and
periodic in the x variable.

For each ¢ > 0, let u € C(R" x [0,00)) be the viscosity solution to the
following Hamilton-Jacobi equation
ug + H (Du, %) =0 in R” x (0, 00), 1)
u(x,0) = g(x) on R".

It was known (Lions-Papanicolaou-Varadhan, 1987), that v, as ¢ — 0,
converges locally uniformly to u, the solution of the effective equation,

{ut + ﬁ(_Du) =0 in ]R”nx (0, 0), )
u(x,0) = g(x) on R".
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Homogenization Theory of Hamilton-Jacobi Equation

Assume H(p, x) € C(R" x R") is uniformly coercive in the p variable and
periodic in the x variable.

For each ¢ > 0, let u € C(R" x [0,00)) be the viscosity solution to the
following Hamilton-Jacobi equation

{u§+ A(Du2) =0 in B x (0,00), M
uf(x,0) = g(x) on R".

It was known (Lions-Papanicolaou-Varadhan, 1987), that v, as ¢ — 0,
converges locally uniformly to u, the solution of the effective equation,

{ut + ﬁ(_Du) =0 in ]R”nx (0, 0), )
u(x,0) = g(x) on R".

H:R" — R is called “effective Hamiltonian”" or “a function”, a nonlinear
averaging of the original H.
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Cell problem: for any p € R”, there exists a UNIQUE number H(p) such
that

H(p+ Dv,y) = H(p) inT".

has periodic viscosity solutions v = v(y, p) (“corrector”).
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Cell problem: for any p € R”, there exists a UNIQUE number H(p) such
that

H(p+ Dv,y) = H(p) inT".

has periodic viscosity solutions v = v(y, p) (“corrector”). Heuristically, the
two-scale asymptotic expansion says:

ut(x,t) = u(x,t) +ev (g, Du) + O(€?).

Note: The corrector v(x, p) for p = Du(x, t) basically captures the
oscillation of Du® at (x,t). y = X.
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Cell problem: for any p € R”, there exists a UNIQUE number H(p) such
that

H(p+ Dv,y) = H(p) inT".

has periodic viscosity solutions v = v(y, p) (“corrector”). Heuristically, the
two-scale asymptotic expansion says:

ut(x,t) = u(x,t) +ev (%, Du) + O(€?).

Note: The corrector v(x, p) for p = Du(x, t) basically captures the
oscillation of Du® at (x,t). y = X.

e A natural and fundamental question: as ¢ — 0,

How fast does u¢ — u?
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Cell problem: for any p € R”, there exists a UNIQUE number H(p) such
that

H(p+ Dv,y) = H(p) inT".

has periodic viscosity solutions v = v(y, p) (“corrector”). Heuristically, the
two-scale asymptotic expansion says:

ut(x,t) = u(x,t) +ev (%, Du) + O(€?).

Note: The corrector v(x, p) for p = Du(x, t) basically captures the
oscillation of Du® at (x,t). y = X.

e A natural and fundamental question: as ¢ — 0,
How fast does u¢ — u?

According to the obove formal expansion, we “have”’ that

|u — u| = O(e).
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Cell problem: for any p € R”, there exists a UNIQUE number H(p) such
that

H(p+ Dv,y) = H(p) inT".

has periodic viscosity solutions v = v(y, p) (“corrector”). Heuristically, the
two-scale asymptotic expansion says:

ut(x,t) = u(x,t) +ev (%, Du) + O(€?).

Note: The corrector v(x, p) for p = Du(x, t) basically captures the
oscillation of Du® at (x,t). y = X.

e A natural and fundamental question: as ¢ — 0,
How fast does u¢ — u?
According to the obove formal expansion, we “have”’ that
|u — u| = O(e).

However, there is NO way to justify this expansion rigorously!
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Previous Results

Why does the expansion not hold generically?

(1) The solution of the effective equation u(x, t) is in general not even C1;
(2) There does not even exist a continuous selection of

p—v(x,p): R"— Lip(R").
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Previous Results

Why does the expansion not hold generically?

(1) The solution of the effective equation u(x, t) is in general not even C1;
(2) There does not even exist a continuous selection of

p—v(x,p): R"— Lip(R").

For general H, the best known result was due to |. Capuzzo-Dolcetta
and H. Ishii (2001) based on pure PDE approaches:

|u¢ —u| < O(e%>.

Yifeng Yu (UCI Math) (Optimal rate of convergence in periodic homc 4 /17



N
Previous Results

Why does the expansion not hold generically?

(1) The solution of the effective equation u(x, t) is in general not even C1;
(2) There does not even exist a continuous selection of

p—v(x,p): R"— Lip(R").

For general H, the best known result was due to |. Capuzzo-Dolcetta
and H. Ishii (2001) based on pure PDE approaches:

|lu —u| <O (e%> .
Strategy: (1) Using solutions to an auxiliary equation v, to replace v.
Avy + H(p + Dvy,x) = 0;

(2) Employing the classical method of “doubling variables” to relax the
regularity requirment of u.
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N
Previous Results

Why does the expansion not hold generically?

(1) The solution of the effective equation u(x, t) is in general not even C1;
(2) There does not even exist a continuous selection of

p—v(x,p): R"— Lip(R").

For general H, the best known result was due to |. Capuzzo-Dolcetta
and H. Ishii (2001) based on pure PDE approaches:

|lu —u| <O (e%> .
Strategy: (1) Using solutions to an auxiliary equation v, to replace v.
Avy + H(p + Dvy,x) = 0;

(2) Employing the classical method of “doubling variables” to relax the
regularity requirment of u.
e Note: Armstrong, Cardaliaguet and Souganidis (2014) extended this to
convex H in the i.i.d setting and obtained O(¢'/®)
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N
Open Question

Whether the convergence rate O(¢'/3) can be improved?

In particular, when can we obtain the optimal one O(¢)?

Note: It is basically impossible to modify or refine the
Capuzzo-Dolcetta—H. Ishii method to achieve this goal. A completely
new approach has to be introduced.
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|
Main Result 1: General Convex Case (p — H(p, x))

Theorem (Mitake, Tran, Y. 2018)

Assume H is onvex in p and g € Lip(R").

(i)
u(x, t) > u(x,t) — Ce for all (x,t) € R" x [0, 00).

The constant C > 0 in (i) and (ii) below depend only on H and
| Dg |l Lo (rn)-
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|
Main Result 1: General Convex Case (p — H(p, x))

Theorem (Mitake, Tran, Y. 2018)
Assume H is onvex in p and g € Lip(R").

(i)

u(x, t) > u(x,t) — Ce for all (x,t) € R" x [0, 00).

The constant C > 0 in (i) and (ii) below depend only on H and

| Dg |l Lo (rn)-
(ii) For fixed (x,t) € R" x (0,00), if u is differentiable at (x,t) and H is
twice differentiable at p = Du(x, t), then

u(x, t) < u(x,t)+ a(’te.

if the initial data g € C?(R") with lgllcomny < 00. If g is merely
Lipschitz continuous, then

€
u(x,t) < u(x,t) 4+ Cyev/e.
Optimal rate of convergence in periodic homc 6 /17




Optimal Rate when n =2

Theorem (Mitake, Tran, Y. 2018)

Assume n = 2 and g € Lip(R?). Assume further that H is convex and
positively homogeneous of degree k in p for some k > 1, that is,

H(Ap, x) = A<H(p, x) for all (A, x, p) € [0,00) x T? x R2. Then,
|u€(x,t) — u(x, t)] < Ce for all (x,t) € R? x [0,0).

Here C > 0 is a constant depending only on H and || Dg|| o (rz)-
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Optimal Rate when n =2

Theorem (Mitake, Tran, Y. 2018)

Assume n = 2 and g € Lip(R?). Assume further that H is convex and
positively homogeneous of degree k in p for some k > 1, that is,
H(Ap, x) = A<H(p, x) for all (A, x, p) € [0,00) x T? x R2. Then,

|u€(x, t) — u(x, t)] < Ce for all (x, t) € R? x [0, 00).

Here C > 0 is a constant depending only on H and || Dg|| o (rz)-

Note that k = 1 corresponds to Hamiltonians associated with the front
propagation, which is probably one of the most physically relevant
situations in the homogenization theory. For example,

us + a(x)|Du| = 0 in crystal growth, etc
and the well known G-equation in turbulent combustion

us + |Dul + V(x) - Du = 0.
Optimal rate of convergence in periodic homc
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Optimal Rate when n =1

Theorem (Mitake, Tran, Y. 2018)

Assume that n =1 and H = H(p, x) is convex in p. Assume further that
g € Lip(R). Then, for each T >0,

|u = ull oo rxpo,17) < Ce.

Here C is a constant depending only on H and ||g’|| 1o (r)-

e Son N.T. Tu extended to H(uy, x/€, x) when n =1 for some H (arxiv).
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Optimal Rate when n =1

Theorem (Mitake, Tran, Y. 2018)

Assume that n =1 and H = H(p, x) is convex in p. Assume further that
g € Lip(R). Then, for each T >0,

|u = ull oo rxpo,17) < Ce.

Here C is a constant depending only on H and ||g’|| 1o (r)-

e Son N.T. Tu extended to H(uy, x/€, x) when n =1 for some H (arxiv).

e For the one dimension case, the remaining question is to find the
optimal rate for general coercive H (i.e. Nonconvex H). Recall that the
Capuzzo-Dolcetta—Ishii result says that

1
Ju® = ul| oo rxfo,7) < Ce3.
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Optimal Rate when n =1

Theorem (Mitake, Tran, Y. 2018)

Assume that n =1 and H = H(p, x) is convex in p. Assume further that
g € Lip(R). Then, for each T >0,

|u = ull oo rxpo,17) < Ce.

Here C is a constant depending only on H and ||g’|| 1o (r)-

e Son N.T. Tu extended to H(uy, x/€, x) when n =1 for some H (arxiv).

e For the one dimension case, the remaining question is to find the
optimal rate for general coercive H (i.e. Nonconvex H). Recall that the
Capuzzo-Dolcetta—Ishii result says that

1
Ju® = ul| oo rxfo,7) < Ce3.

e We conjecture that the optimal rate is O (\/¢).
Optimal rate of convergence in periodic homc 8 /17



Sketch of Proof of the Lower Bound u® > u — Ce

0
u(0,1) = inf {g (en (=€ 1)) + 6/ L(n(t),n(t)) dt}

n(0)=0 —e1

Here L(q,x) = sup,ern{p - g — H(p,x)}. Also,
u(0,1) = inf {g(y) + L(=x)}
For any p € R" and a “corrector” v,:
H(p + Dvp,y) = H(p),
0

| L0 (04 (p) ot = pa(0)—pn (—e ) Hvi0(0))-vp (0 (1))
Accordingly, since L(q) = sup,cga{p - ¢ — H(p)},

0

o[ (e i(e) de = T (=en (1)) - Ce

Yifeng Yu (UCI Math) (Optimal rate of convergence in periodic homc 9 /17



The Upper Bound and the Hamiltonian System

For any p € R”, if £ : R — R" is a global charateristics of a corrector
Vp, i€,

p(6(1) — ) + wl€(8)) — walel) = [ LE.)+ o) s

t

for all t1 < to. The collection of those £ is the so called “Mané set” in
weak KAM theory. Such ¢ is an absolute minimizer of the action

Nﬂz/uﬂm%m+H@Nt

Finding upper bound is basically reduced to the following question:

Yifeng Yu (UCI Math) (Optimal rate of convergence in periodic homc 10 / 17



|
The Upper Bound and the Hamiltonian System

For any p € R”, if £ : R — R" is a global charateristics of a corrector
Vp, i€,

n@mrfm»+mamrw@m»—[1@o+mm$

for all t1 < to. The collection of those £ is the so called “Mané set” in
weak KAM theory. Such ¢ is an absolute minimizer of the action

Nﬂz/uﬂm%m+H@Nt

Finding upper bound is basically reduced to the following question:

Question: Does the average slope
&(t)
t
converge as t — oo? More importantly, what is the convergence rate?
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e It is known that in weak KAM theory/Aubry-Mather theory that if
H is differentiable at p, then

lim §(tt) = DH(p). (3)

t—00
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e It is known that in weak KAM theory/Aubry-Mather theory that if
H is differentiable at p, then

O

lim =2 = DH(p). ©)

Connection with the convergence rate in homogenization: for p = Du(x, t)

C

(1). ‘5(:) - DH(p)‘ <<= U —u <O() for g € Lip(R")

£(t)

(). ’t - DH(p)‘ << {’“e —u| < O(y/€) for g € Lip(R")

— =
Vit |u¢ — u| < O(e) for g € C?(R").
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-
e It is known that in weak KAM theory/Aubry-Mather theory that if
H is differentiable at p, then

lim £®) = DH(p). (3)

t—oo t

Connection with the convergence rate in homogenization: for p = Du(x, t)

9 o) < € = - ui< 00) forg e Lin®)
£(t) _ C |u¢ — u| < O(y/e) for g € Lip(R")
) ’t - DH(")‘ =ViT {rue Ul < 0(e) forg e C2(RT),

By modifying the argument of (3), it is easy to show that if H is twice
differentiable at p, then (Gomes 2002)

&(t) C
=2 — DH(p )’ NG
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= 2 and the Aubry-Mather Theory

Key ingredient: 2d topology + the fact that two absolute minimizers &
cannot intersect twice lead to good description of the structure of absolute
minimizers (Aubry-Mather sets basically consist of recurrent ones).
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-
= 2 and the Aubry-Mather Theory

Key ingredient: 2d topology + the fact that two absolute minimizers &
cannot intersect twice lead to good description of the structure of absolute
minimizers (Aubry-Mather sets basically consist of recurrent ones).

e In particular, each absolute minimizer can be identifed with a circle
map: f : R — R, continuous, increasing and f(x + 1) = f(x) + 1.

o T T

There exists a rotation number « such that |f/(x) — x — ai| < 1 for all i.
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Connection with the Convergence Rate

e If n =2 and the Hamiltonian H(p, x) is Tonelli and homogeneous of
degree k, the H is differentiable away from 0 (Carnerio, 1995).
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Connection with the Convergence Rate

e If n =2 and the Hamiltonian H(p, x) is Tonelli and homogeneous of
degree k, the H is differentiable away from 0 (Carnerio, 1995).

e Combining with the circle map identification and some weak KAM type
calcuations, we can deduce that for any global charateristics £ : R — R:

C
t
Via approximation, this leads to the O(¢) convergence rate for general
convex, coercive and homogeneous H.

‘g(tt) - DH(p)‘ <
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Connection with the Convergence Rate

e If n =2 and the Hamiltonian H(p, x) is Tonelli and homogeneous of
degree k, the H is differentiable away from 0 (Carnerio, 1995).

e Combining with the circle map identification and some weak KAM type

calcuations, we can deduce that for any global charateristics £ : R — R:
C
t

t J—
- oA <
Via approximation, this leads to the O(¢) convergence rate for general

convex, coercive and homogeneous H.

Conjecture: For a general convex and coercive H(p, x) when n = 2, we
are working on to show that

lu(x,t) — u(x,t)] < Cer e forae. (x,t) € R? x (0, +00).
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Some Remarks about the Higher Dimension Case n > 3

Consider a simple metric Hamiltonian with smooth, positive and periodic

a(x)
H(p,x) = a(x)|p|-

and the associated effective Hamiltonian H(p):
a(x)|p+ Dv| = H(p).

H(p) is convex, coercive and homogeneous of degree 1.

Yifeng Yu (UCI Math) (Optimal rate of convergence in periodic homc 14 /17



Some Remarks about the Higher Dimension Case n > 3
Consider a simple metric Hamiltonian with smooth, positive and periodic

a(x)
H(p,x) = a(x)|p|-

and the associated effective Hamiltonian H(p):
a(x)|p+ Dv| = H(p).

H(p) is convex, coercive and homogeneous of degree 1.

However, it is extremely hard to derive any further informaiton when
n > 37 For instance, the following “simple” question is still open

Does there exist a non-constant smooth a(x) such that H = |p|?
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Some Remarks about the Higher Dimension Case n > 3
Consider a simple metric Hamiltonian with smooth, positive and periodic

a(x)
H(p,x) = a(x)|p|-

and the associated effective Hamiltonian H(p):
a(x)|p+ Dv| = H(p).

H(p) is convex, coercive and homogeneous of degree 1.

However, it is extremely hard to derive any further informaiton when
n > 37 For instance, the following “simple” question is still open

Does there exist a non-constant smooth a(x) such that H = |p|?

When n = 2, the answer is “No" (Bangert, 1994) based on Aubry-Mather
Optimal rate of convergence in periodic homc 14 /17



-
Lack of Examples with Fractional Convergence Rate

For n > 3, consider
H(p, x) = a(x)|pl.
Although it is very reasonable to believe that the optimal convergence rate

O(e) is not achievable in general, we haven't been able to construct an

example with fractional convergence rate since this involves handling
chaotic behaviors.

Yifeng Yu (UCI Math) (Optimal rate of convergence in periodic homc 15 / 17



Lack of Examples with Fractional Convergence Rate

For n > 3, consider

H(p, x) = a(x)|pl.
Although it is very reasonable to believe that the optimal convergence rate
O(e) is not achievable in general, we haven't been able to construct an
example with fractional convergence rate since this involves handling
chaotic behaviors.

When n > 3, the only well-understood interesting example is the classical
Hedlund example: The metric function a(x) is a smooth periodic
singular pertubation of 1 such that any minimizing geodesics is basically
confined in a small neighbourhood of one of three disjoint parallel lines.

So the Aubry-Mather set is very small and

F(P) = CmaX{|P1!7 !P2\7 \P3\}-

e The level surface is a cube, in particular not C!, which is different from
n=2.
Optimal rate of convergence in periodic homc 15 / 17



2n
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2n

However, for this sort of “bad" example, the convergence rate is O(¢).
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Summary: Optimal convergence rate = Dynamical system.

(1) For general dimension n and C? initial data g,
|u(x,t) — u(x, t)] = O(¢) for “typical” (x,t);

e Key ingrient: Use H(p) to control the behavior of orbits on the Mané
set.

(2) When n =2 and H is homogeneous H(\p, x) = A*H(p, x):
lu(x, t) — u(x, t)| = O(e) for all (x,t);

e Key ingredient: the original Aubry-Mather theory—identification of an
orbit with a circle map.

(3) When n=1,
lu(x,t) — u(x, t)] = O(e) for all (x,t);

e Key ingredient: integrability of 1d Hamiltonian system.
Optimal rate of convergence in periodic homc 17 /17



Optimal rate of convergence in periodic homogenization of
Hamilton-Jacobi equations - Yifeng Yu

Lecture Notes (Ori S. Katz)

October 12, 2018

Abstract

In this talk, I will present some recent progress in obtaining the optimal rate of convergence O(€) in periodic
homogenization of Hamilton-Jacobi equations. Our method is completely different from previous pure PDE
approaches which only provides O(el/ 3). We have discovered a natural connection between the convergence rate
and the underlying Hamiltonian system. This allows us to employ powerful tools from the Aubry-Mather theory
and the weak KAM theory. It is a joint work with Hiroyashi Mitake and Hung V. Tran.

1 Blackboard + Lecture notes

No x dependence in the effective Hamiltonian.
The two major PDE’s in the talk:

wi + H (Dut,2) =0
€
u (z,u) = g (x)
ug + H (Du) =0
— *
e—0 u (;& ’U) =g (;[;)
What is H?
The “corrector” may not be unique.
Why is it called the corrector?
u® has fluctuations, u¢ — u, Du® — Du.

Fix a point u (z,t) and look at the direction p = Du (x,t).
so the oscillation of the gradient is captured by

u ~u(x,t) + eu(p,z/e).

Scanned with CamScanner

So this is how we determine the effective Hamiltonian:

H (p+ Dv,y) = H (p)



For regularity:
1. Find a Lipshitz-continuous in p selection

p = u(p;x)
2. Solution to the effective equation u (z,t) to :
ug + H (Du) =0

u(z,v) =g (x)

that is C'!.

For n=1, this is easy, but in higher dimensions, for example n = 3 there is no continuous selection. So the first
condition is the most serious obstacle due to lack of general regularity.

Up to now, the best result was due to Capuzzo-Dolcetta and Ishii (2001).

By combining 2 strategies they got the result

|u® —ul <O (61/3) .

The question of the talk - can we improve convergence
u —u ((9 (61/3>)
to O (€)?

Note that in Main Result 1 we assume convex H.
Note that the constant in (ii) depends on z, .
Note that if H is convex, then so is H, where

H (p+ Du,y) = H (p),

therefore it is twice differentiable.
Thus, we get
|u —ul <O (e)

for “typical” (z,t). That’s the best we can say in the general high dimensional case.

‘Scanned with CamScanner

If we reduce the dimension we get the optimal convergence rate, with a constant independent on (x,t).

In 1D everything is perfect. Initially, we didn’t intend to obtain O (¢). In the beginning, we wanted to find a
specific example for O (e).

What is the optimal rate for a general coercive H?

Even for 1D, non-convex H becomes very complicated.

Sketch of proof - lower bound is not hard. How to get the other direction? The difficulty is that the integral is
over 1/e. Start at a point 1 (0) and integrate until 5 (1/¢).



,Z(o), -
e '
(o bl
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The general direction of integration is p = Dwu (0,1). Minimizing this, how do you identify the final fate of the
trajectory? So we have to find a trajectory that is integrable in the sense that you can identify the final point of
the trajectory. So we look at the global characteristics of the PDE.

Absolute minimizer: Choose any two points on a curve ty,ts, then another curve that goes through the same
two points will have the same energy difference.

Problem is reduced to - if I have a trajectory, how can I find the final point?

1. KAM for n > 3 - Given a near integrable Hamiltonian

H’ = H (p) + 0H (p, ),

there is the KAM torus Q and near it ‘@ — Q’ < C/t. But away from the KAM tori this is not true.

=
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2. n =2 - Aubry-Mather

3. n =1 - integrable.

What about the case n > 3 , non-perturbative? Then KAM doesn’t hold. But there is one thing to do - use an
effective Hamiltonian H (p) to control the trajectory. So if we know H is twice differentiable we can find the limit
Gomes 2002.

n = 2 and the Aubry-Mather theory:

We want

SO prw)|<cp,

we have

i
‘f(x) _ 2‘ S 2 /i,
i
but to apply the second to the first we need a special type of Hamiltonian.
This is a topological statement.
Conjecture - work in progress - we think the constant should be 2.



The missing step: Look at a graph of H (p). Think of the mechanical Hamiltonian
1
S I +V ().

If DH (p) is rational, everything works. But if it is irrational, we need to find a non-tangential direction such
that h(t) = H (p + tq) is twice differentiable, h” (u) exists, then we are done. But we haven’t figured out, if it’s
irrational, how to figure out if it’s twice differentiable.

Some remarks about the higher dimensional case n > 3: to show how difficult this is.

Bangert 1994 even proved a stronger case.

Question - don’t you need |p|2?

Answer:

|
=
+
<

[
=

(p) > mazV

is equivalent to

Ip| = 1.

Question: Are we able to find just one example, one point (xg, tg), such that
[u€ (w0, to) — u (zo,t0)| > Ce?,a € (0,1)

Level set is a cube. For this example we get O (€). The trouble you may obtain with the cube are the edges that
may be non-differentiable. So you are not able to find a trajectory on the edges that points to ¢ € Du (x,t). But
this can be obtained by jumping from one trajectory to another. The combines trajectory will not be a minimizer
but that’s OK.



