
Scanned with CamScanner



1

The Clebsch Representation in Optimal Control, integrable systems, and discrete dynamics

Anthony Bloch
Work with Francois Gay-Balmaz, Tudor Ratiu

(See also earlier work with Brockett, Crouch, Marsden, Nordkvist, Sanyal)

• Symmetric rigid body equations – smooth and discrete

• Optimal Control and the Clebsch problem

• Flows on Stiefel manfolds, the Neumann problem, Jacobi flow on ellipsoid

•Integrable Flows on symmetric matrices, Toda flows

• Moser and the Geometry of Quadrics
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Rigid Body Equations:

Ṁ = [M,W], M = LW+WL

Symmetric Rigid Body Equations:

Q̇ = QW Ṗ = PW
Toda Flow: general and tridiagonal

Ẋ = [X ,PSX ]

Ẋ = [X , [X ,N]]

(with Brockett, Ratiu, Flaschka)
Flow on the symmetric matrices/symplectic groups

Ẋ = [X2,N] = [X ,XN +NX ]

(w. Iserles, Marden, Ratiu)
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Figure 0.1: Rigid Body Phase Portrait

1 The n-dimensional Rigid Body.

• Here review the classical rigid body equations in in n dimensions.
Euler equations for the rigid body in three dimensions:

IẆ = IW⇥W (1.1)

–dynamics in the body frame. I here is the moment of inertia matrix and W the vector
of angular velocities in the body frame. Also need kinematics: q̇ = qŴ where hat maps
vectors in R3 to matrices in the special orthogonal group, a Lie algebra homomorphism.
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The dynamics evolve on the momentum sphere: ||M2||= M2
1 +M2

2 +M2
3 = c where Mi =

IiWi.
Simpler than using the Euler angles. This is an Euler-Poincaré equation.
Hamiltonian form, a Lie-Poisson equation:

Ṁ = M⇥W = {M,H(M)}
where H = 1/2(M ·W). This is integrable system.
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In n dimensions:
Use the following pairing on so(n), the Lie algebra of the n-dimensional proper rotation

group SO(n):
hx ,hi=�1

2
trace(x h).

Use this inner product to identify so(n)⇤ so(n).

• Recall from Manakov [1976] and Ratiu [1980] that the left invariant generalized rigid
body equations on SO(n) may be written as

Q̇ = QW
Ṁ = [M,W] , (RBn)

where Q 2 SO(n) denotes the configuration space variable (the attitude of the body), W =
Q�1Q̇ 2 so(n) is the body angular velocity, and the body angular momentum is

M := J(W) = LW+WL 2 so(n) .
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• Here J : so(n)! so(n) is the symmetric pos def operator defined by

J(W) = LW+WL,

where L is a diagonal matrix sat Li+L j > 0 for all i 6= j.
There is a similar formalism for any semisimple Lie group.
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Right Invariant System. The system (RBn) has a right invariant counterpart. This right
invariant system is given as follows:

Q̇r = WrQr; Ṁr = [Wr,Mr] (RightRBn)

where in this case Wr = Q̇rQ�1
r and Mr = J(Wr) where J has the same form as above.

Relating the Left and the Right Rigid Body Systems.

Proposition 1.1. If (Q(t),M(t)) satisfies (RBn) then the pair (Qr(t),Mr(t)), where Qr(t) =
Q(t)T and Mr(t) =�M(t) satisfies (RightRBn). There is a similar converse statement.
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2 The Symmetric Rigid Body Equations.

The System (SRBn). By definition, the left invariant symmetric rigid body system (SRBn)
is given by the first order equations

Q̇ = QW
Ṗ = PW (SRBn)

where W is regarded as a function of Q and P via the equations

W := J�1(M) 2 so(n) and M := QT P�PT Q.

Proposition 2.1. If (Q,P) is a solution of (SRBn), then (Q,M) where M = J(W) and W = Q�1Q̇
satisfies the rigid body equations (RBn).

Proof. Differentiating M = QT P�PT Q and using the equations (8.6) gives the second of
the equations (RBn). ⌅
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Proposition 2.2. For a solution of the left invariant rigid body equations (RBn) obtained by
means of Proposition 2.1, the spatial angular momentum is given by m = PQT �QPT and
hence m is conserved along the rigid body flow.
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• Local Equivalence of the Rigid Body and the Symmetric Rigid Body Equations.
Above saw that solutions of the symmetric rigid body system can be mapped to solutions

of the rigid body system. Now consider the converse question:
Suppose have a solution (Q,M) of the standard left invariant rigid body equations.

Sseek to solve for P in
M = QT P�PT Q. (2.1)

Definition 2.3. Let C denote the set of (Q,P) that map to M’s with operator norm equal to 2
and let S denote the set of (Q,P) that map to M’s with operator norm strictly less than 2. Also
denote by SM the set of points (Q,M) 2 T ⇤SO(n) with kMkop  2.

Proposition 2.4. For kMkop < 2, the equation(2.1) has the solution

P = Q
⇣

esinh�1 M/2
⌘

(2.2)
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The System (RightSRBn). By definition, the symmetric representation of the rigid body

equations in right invariant form on SO(n)⇥SO(n) are given by the first order equations

Q̇r = WrQr; Ṗr = WrPr (RightSRBn)

where Wr := J�1(Mr) 2 so(n) and where Mr = PrQT
r �QrPT

r .
It is easy to check that that this system is right invariant on SO(n)⇥SO(n).

Proposition 2.5. If (Qr,Pr) is a solution of (RightSRBn), then (Qr,Mr), where Mr = J(Wr) and
Wr = Q̇rQ�1

r , satisfies the right rigid body equations (RightRBn).
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The Hamiltonian Form of (SRBn).
Recall that the classical rigid body equations are Hamiltonian on T ⇤SO(n) with respect

to the canonical symplectic structure on the cotangent bundle of SO(n).
In symmetric case have:

Proposition 2.6. Consider the Hamiltonian system on the symplectic vector space gl(n)⇥gl(n)
with the symplectic structure

W
gl(n)(x1,h1,x2,h2) =

1
2

trace(hT
2 x1�h

T
1 x2) (2.3)

and Hamiltonian

H(x ,h) =�1
8

trace
⇥�

J�1(x T
h �h

T
x )
��

x

T
h �h

T
x

�⇤
. (2.4)

The corresponding Hamiltonian system leaves SO(n)⇥SO(n) invariant and induces on it, the
symmetric rigid body flow.

Note that the above Hamiltonian is equivalent to

H =
1
4
⌦
J�1M,M

↵
.
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3 Control and Optimal Control

An affine nonlinear control systems, has the form

ẋ = f (x,u) = f (x)+
m

Â
i=1

gi(x)ui , (3.1)

where f and the gi, i = 1, . . . ,m, are smooth vector fields on a smooth manifold M and ui

are admissable controls. The vector field f is usually called the drift vector field, and the
gi are called the control vector fields. When f = 0 we say the system is kinematic.

Typical optimal control problem: given a smooth cost function g(x,u)

min
u(·)

Z T

0
g(x,u)dt, (3.2)

subject to the following conditions:
(i) a differential equation constraint ẋ = f (x,u), and a state space constraint x 2 M, and

a constraint on the controls u 2 W ⇢ Rk;

(ii) the endpoint conditions: x(0) = x0 and x(T ) = xT .
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• Pontryagin maximum principle
Necessary conditions for optimality: introduce a parametrized Hamiltonian function

on T ⇤M:
Ĥ(x, p,u) = hp, f (x,u)i� p0g(x,u), (3.3)

where p0 � 0 is a fixed positive constant, and p 2 T ⇤M. Note that p0 is the multiplier of
the cost function and that Ĥ is linear in p.

We denote by t 7! u⇤(t) a curve that satisfies the following relationship along a trajectory
t 7! (x(t), p(t)) in T ⇤M:

H(x(t), p(t),u⇤(t)) = max
u2W

Ĥ(x(t), p(t),u). (3.4)

Then if u⇤ is defined implicitly as a function of x and p by equation (3.4), we can define
H⇤ by

H⇤(x(t), p(t), t) = H(x(t), p(t),u⇤(t)). (3.5)

The time-varying Hamiltonian function H⇤ defines a time-varying Hamiltonian vector
field XH⇤ on T ⇤M with respect to the canonical symplectic structure on T ⇤M.
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Integrability: recall Arnold-Lioville theorem: for a system on a 2n-dimensional sym-
pletic manifold M a Hamiltonian system with Hamiltonian H is integrable if there exist
n almost everywhere independent integrals on M which are involution – commute under
the Poisson bracket – with H.
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4 Optimal Control formulation of Rigid Body

Definition 4.1. Let T > 0, Q0,QT 2 SO(n) be given and fixed. Let the rigid body optimal
control problem be given by

min
U2so(n)

1
4

Z T

0
hU,J(U)idt (4.1)

subject to the constraint on U that there be a curve Q(t) 2 SO(n) such that

Q̇ = QU Q(0) = Q0, Q(T ) = QT . (4.2)

Proposition 4.2. The rigid body optimal control problem (4.1) has optimal evolution equations
(8.6) where P is the costate vector given by the maximum principle.

The optimal controls in this case are given by

U = J�1(QT P�PT Q). (4.3)

The proof involves writing the Hamiltonian of the maximum principle as

H = hP,QUi+ 1
4
hU,J(U)i , (4.4)
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where the costate vector P is a multiplier enforcing the dynamics, and then maximizing
with respect to U in the standard fashion (see, for example, Brockett [1973]).
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5 Discrete Variational Problems

This general method is closely related to the development of variational integrators for
the integration of mechanical systems, as in Kane, Marsden, Ortiz and West [2000]. See
also Iserles, McLachlan, and Zanna [1999] and Budd and Iserles [1999].

Key notion: discrete Lagrangian, which is a map Ld : Q⇥Q ! R. The important point
here is that the velocity phase space T Q of Lagrangian mechanics has been replaced by
Q⇥Q.

In the discrete setting, the action integral of Lagrangian mechanics is replaced by an
action sum

Sd =
N�1

Â
k=0

Ld(qk,qk+1) (5.1)

where qk 2 Q, the sum is over discrete time, and the equations are obtained by a discrete
action principle which minimizes the discrete action given fixed endpoints q0 and qN.

Taking the extremum over q1, · · · ,qN�1 gives the discrete Euler-Lagrange equations
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q(a)

q(b)

δq(t)

Q

q(t)

q0

qN

δqi

Q

qi

varied curve

varied point

Figure 5.1: The discrete variational principle.

D2Ld(qk�1,qk)+D1Ld(qk,qk+1) = 0, (5.2)

for k = 1, · · · ,N �1.
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We can rewrite this as follows

D2Ld +D1Ld �F = 0, (5.3)

where F : Q⇥Q ! Q⇥Q is defined implicitly by F(qk�1,qk) = (qk,qk+1).
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6 Moser–Veselov Discretization

Recall now the Moser–Veselov [1991] discrete rigid body equations. This system will be
called DRBn.

See also Deift, Li and Tomei [1992].

Discretize the configuration matrix and let Qk 2 SO(n) denote the rigid body configura-
tion at time k, let Wk 2 SO(n) denote the discrete rigid body angular velocity at time k, let
I denote the diagonal moment of inertia matrix, and let Mk denote the rigid body angular
momentum at time k.

These quantities are related by the Moser-Veselov equations

Wk = QT
k Qk�1 (6.1)

Mk = WT
k L�LWk (6.2)

Mk+1 = WkMkWT
k . (6.3)

(DRBn)
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The Moser-Veslov equations (6.1)-(6.3) can in fact be obtained by a discrete variational
principle (see Moser and Veselov [1991]) of the form described above: one considers the
stationary points of the functional

S = Â
k

trace(QkIQk+1) (6.4)

on sequences of orthogonal n⇥n matrices.
See also Marsden, Pekarsky and Shkoller [1999].
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The Discrete Symmetric Rigid Body.
We now define the symmetric discrete rigid body equations as follows:

Qk+1 = QkUk

Pk+1 = PkUk , (SDRBn)

where Uk is defined by
UkL�LUT

k = QT
k Pk �PT

k Qk . (6.5)

Using these equations, we have the algorithm (Qk,Pk) 7! (Qk+1,Pk+1) defined by: com-
pute Uk from (11.2), compute Qk+1 and Pk+1 using (11.1). We note that the update map for
Q and P is done in parallel here.

Have:
Proposition 6.1. The symmetric discrete rigid body equations (11.1) on S are equivalent to
the Moser-Veselov equations (6.1)– (6.3) (DRBn) on the set SM where S and SM are defined in
Proposition 2.3.

Note that mk = PkQT
k �QkPT

k then mk = QkMkQT
k and is conserved spatial momentum.
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Discrete Optimal Control

Definition 6.2. Let L be a positive definite diagonal matrix. Let Q0,QN 2 SO(n) be given and
fixed. Let

V̂ =
N

Â
k=1

trace(LUk). (6.6)

Define the optimal control problem

min
Uk

V̂ = min
Uk

N

Â
k=1

trace(LUk) (6.7)

subject to dynamics and initial and final data

Qk+1 = QkUk, Q0 = Q0, QN = QN (6.8)

for Qk,Uk 2 SO(n).

Theorem 6.3. A solution of the optimal control problem (6.2) satisfies the optimal evolution
equations (11.1)

Qk+1 = QkUk; Pk+1 = PkUk , (6.9)
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where Pk is the discrete covector in the discrete maximum principle and Uk is defined by

UkL�LUT
k = QT

k Pk �PT
k Qk . (6.10)
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7 The Clebsch Optimal control problem

We recall from Gay-Balmaz and Ratiu some facts concerning the Clebsch optimal control
problem. Let F : G⇥Q ! Q be an action of a Lie group G on a manifold Q. We denote
by qg := F(q,g) the action of g 2 G on q 2 Q. Given u 2 g, where g is the Lie algebra of G,
we denote by uQ 2 X(Q) the infinitesimal generator of the action.

Recall that uQ is the vector field on Q defined at q 2 Q by uQ(q) := d
dt

��
t=0 qexp(tu), where

exp : g! G is the exponential map.
Given a cost function ` : g⇥Q ! R, also called here a Lagrangian, Clebsch optimal

control problem is
min
u(t)

Z T

0
`(u(t),q(t))dt (7.1)

subject to the following conditions:

(A) q̇(t) = u(t)Q(q(t));

(B) q(0) = q0 and q(T ) = qT .
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The momentum map for the cotangent lifted G-action on T ⇤Q is the map J : T ⇤Q ! g

⇤,
defined by hJ(aq),ui := haq,uQ(q)i, for any aq 2 T ⇤Q, u 2 g. This map is equivariant
relative to the cotangent lifted G-action on T ⇤Q and the coadjoint G-action on g

⇤.
If a,b 2 T ⇤

q Q, the vertical lift of b relative to a is defined by

Ver
a

b :=
d
ds

����
s=0

(a + sb ) 2 T
a

(T ⇤Q).

Theorem 7.1. Assume that u2 g 7! d`
du 2 g

⇤ is a diffeomorphism and that G act on the left (resp.
on the right). Then

• An extremal solution of the Clebsch optimal control problem (7.1) is a solution of

d`

du
= J(a), ȧ = uT ⇤Q(a)+Ver

a

d`

dq
. (7.2)

• These equations are Hamiltonian on T ⇤Q relative to the Hamiltonian H given by

H(aq) = h(J(aq),q),

where h : g⇤⇥Q !R is the Hamiltonian obtained from ` by Legendre transformation on g.
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• These equations imply (a generalization of) the Euler-Poincaré equations for the control u,
given by

d
dt

d`

du
=�ad⇤

u
d`

du
+J

✓
d`

dq

◆
, resp.

d
dt

d`

du
= ad⇤

u
d`

du
+J

✓
d`

dq

◆
. (7.3)
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The case of a representation: When Q is a dual vector space V ⇤ on which G acts by a
left representation, a 2V ⇤ 7! ga 2V ⇤, the momentum map recovers the usual expression

J
✓

d`

da

◆
=�d`

da
⇧a

appearing in semidirect product theory. Here the diamond operator ⇧ : V ⇥V ⇤ ! g is de-
fined by hv⇧a,x i=�hx a,vi, where x a denotes the infinitesimal action of the Lie algebra
element x 2 g on a 2V ⇤. We now reformulate the previous in this case.
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Theorem 7.2. Assume that u 2 g 7! d`
du 2 g

⇤ is a diffeomorphism and that V ⇤ is a left (resp.
right) representation space of G. Then

• An extremal solution of the Clebsch optimal control problem (7.1) is a solution of

d`

du
=�p⇧a, ȧ = ua, ṗ = up+

d`

da
, resp. ȧ = au, ṗ = pu+

d`

da
(7.4)

• These equations are Hamiltonian on T ⇤V ⇤ relative to the Hamiltonian H given by

H(a, p) = h(�p⇧a,a),

where h : g⇤ ⇥V ⇤ ! R is the Hamiltonian obtained from ` by Legendre transformation on
g.

• These equations imply the Euler-Poincaré equations for semidirect product for the control
u, given by

d
dt

d`

du
=�ad⇤

u
d`

du
� d`

da
⇧a, resp.

d
dt

d`

du
= ad⇤

u
d`

du
� d`

da
⇧a. (7.5)
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Equivalently, the Lie-Poisson equations on the dual of the semidrect product Lie algebra
gsV hold:

8
>><

>>:

d
dt

µ =�ad⇤
dh
d µ

µ +
dh
da

⇧a

d
dt

a =
dh
d µ

a
, resp.

8
>><

>>:

d
dt

µ = ad⇤
dh
d µ

µ +
dh
da

⇧a

d
dt

a =
dh
d µ

a
(7.6)
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Restriction to G-orbits:
Note that, due to condition (A), the solution q(t) of the Clebsch optimal control problem

(7.1) necessarily preserves the G-orbit O of the initial condition q0. Therefore, we always
assume that q0 and and qT belong to the same G-orbit, in order to have a well posed
problem. As a consequence, the Clebsch optimal control problem (7.1) on g⇥Q with
q0,qT 2 O has the same solutions as the restricted Clebsch optimal control problem on
g⇥O given by

min
u(t)

Z T

0
`O(u(t),q(t))dt (7.7)

subject to the following conditions:

(A) q̇(t) = u(t)O(q(t));

(B) q(0) = q0 and q(T ) = qT .

In (7.7), the cost function `O : g⇥O !R is defined by `O(u,q) = `(u, i(q)), where i : O ,!Q
is the inclusion, and uO denotes the infinitesimal generator of the G-action on O . We have
the relation Ti(uO(q)) = uQ(i(q)), for all q 2 O .
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Quadratic cost functions and the normal metric:
Study the Clebsch optimal control problem in the special case where its cost function

is given by the kinetic energy of a given inner product on the Lie algebra. We then show
that the extremals are geodesics relative to an induced Riemannian metric on orbits. Let
g be the inner product on g and consider

`(u,q) =
1
2

g(u,u). (7.8)

Defining the flat operator g 3 u 7! u[ 2 g

⇤ by u[ := g(u, ), we have the functional deriva-
tives

d`

du
= u[ and d`

dq
= 0.

The stationarity conditions (7.2) and the Euler-Poincaré equations (7.3) read

ȧq = uT ⇤Q(a), u[ = J(aq), and d
dt

u[ = ad⇤
u u[.
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The Hamiltonian.:
Since the Lagrangian ` is hyperregular we can consider its associated Hamiltonian

h(µ,q) =
1
2

g(µ ],µ ]),

where the sharp operator g

⇤ 3 µ 7! µ

] 2 g is defined as the inverse of the flat operator.
The Hamiltonian H : T ⇤Q ! R is thus

H(aq) =
1
2

g

�
J(aq)

],J(aq)
]
�
=:

1
2

k(q)(aq,aq),

where we defined the symmetric positive 2-contravariant tensor k on Q by

k(q)(aq,bq) := g

�
J(aq)

],J(bq)
]
�
, for all aq,bq 2 T ⇤Q.

We shall show that the tensor k , and hence the Hamiltonian H, are closely related to a
particular Riemannian metric on the G-orbits, called the normal metric.
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The normal metric on orbits:
We now recall the definition of the normal metric on G-orbits. Given q 2 Q, let gq :=

{x 2 g | xQ(q) = 0} denote the isotropy Lie algebra of q. Using the inner product g on g,
orthogonally decompose g= gq�g

?
q , and denote by u = uq+uq the associated splitting of

u 2 g in this direct sum. With these notations, the normal metric on a G-orbit O is defined
by

gO(q)(uQ(q),vQ(q)) := g(uq,vq), for all q 2 Q and u,v 2 g. (7.9)

Theorem 7.3. Let G be a Lie group acting on the right on the smooth manifold Q and let g be
an inner product on g. Define the following symmetric positive 2-contravariant tensor on Q:

k(q)(aq,bq) := g

�
J(aq)

],J(bq)
]
�
, aq,bq 2 T ⇤Q. (7.10)

Then:

• k is non-degenerate if and only if the G-action on Q is infinitesimally transitive.

• k induces a well-defined co-metric kO on each G-orbit O of Q, through the following
relation

kO(q)
�
T ⇤i

�
ai(q)

�
,T ⇤i

�
bi(q)

��
= k(i(q))

�
ai(q),bi(q)

�
, (7.11)
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for q 2 O and ai(q),bi(q) 2 T ⇤
i(q)Q. The co-metric kO is explicitly given by

kO(q)(aq,bq) = g

�
JO(aq)

],JO(bq)
]
�
, for aq,bq 2 T ⇤O. (7.12)

• kO is the co-metric associated to the normal metric on O , i.e.,

k(q)(aq,bq) = gO(q)(a ]
q,b

]
q), for all q 2 O and all aq,bq 2 T ⇤

q O, (7.13)

where T ⇤
q O 3 aq 7! a

]
q 2 TqO is the sharp operator associated to gO .
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As we have seen we can restrict the Clebsch optimal control problem to the G-orbit O
containing q0. In this case, by using Theorem 7.3, the collective Hamiltonian turns out to
be the kinetic energy of the normal metric, i.e.,

HO(aq) =
1
2

kO(q)(aq,aq) =
1
2

gO(a
]
q,a

]
q). (7.14)

We thus obtain the following instance of Theorem 7.1 which allows to interpret the solu-
tion q(t) of the Clebsch optimal control problem for (7.8) as geodesics on G-obits.

Corollary 7.4 (Clebsch optimal control and geodesics of the normal metric). Let the Lie group
G act on the right on Q, let g be an inner product, suppose q0,qT 2 O , and consider the cost
function `(u,q) = 1

2g(u,u). Then:

• If t 7! (u(t),q(t)) 2 g⇥O is an extremal solution of the Clebsch optimal control problem
(7.1), then there is a curve t 7! a(t)2 T ⇤O covering q(t), such that the following equations
holds:

u[ = J(a), ȧ = uT ⇤Q(a). (7.15)
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• Equations (7.15) imply the Euler-Poincaré equations for the control u
d
dt

u[ = ad⇤
u u[. (7.16)

• The second equation in (7.15), in which the first equation is used, is Hamiltonian on T ⇤O
for the Hamiltonian (7.14). Therefore, q(t) is a geodesic on O with respect to the normal
metric gO .

The previous discussion can be easily adapted to the case with a potential, i.e.,

`(u,q) =
1
2

g(u,u)�V (q).

Equations (7.15) and (7.16) then become

u[ = J(a), ȧ = uT ⇤Q(a)�Ver
a

dV

dq
and d

dt
u[ = ad⇤

u u[�J
✓

dV

dq

◆
. (7.17)

The Hamiltonian HO : T ⇤O ! R takes the standard kinetic plus potential form

HO(aq) =
1
2

gO(a
]
q,a

]
q)+V (q).
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Optimal control associated to geodesics:
Suppose that (Q,g) is a Riemannian manifold and consider the minimization of the

Riemannian distance
min

Z T

0

1
2
kq̇(t)k2dt (7.18)

subject to the condition q(0)= q0 and q(T )= qT . Suppose that there is a transitive action of
the Lie group G on Q. Then this minimization problem can be reformulated as a Clebsch
optimal control problem, namely,

min
u(t)

Z T

0

1
2
kuQ(q)k2dt (7.19)

subject to the following conditions:
(A) q̇(t) = u(t)Q(q(t));
(B) q(0) = q0 and q(T ) = qT .
We can thus write the cost function as

`(u,q) =
1
2
kuQ(q)k2 =

1
2
hI(q)u,ui ,
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where for each q 2 Q, I(q) is the locked inertia tensor I(q) : g! g

⇤ defined by

hI(q)u,vi := g(q)(uQ(q),vQ(q)),

for any u,v 2 g. The functional derivatives are
d`

du
= I(q)u 2 g

�
q and d`

dq
= g(uQ(q),—uQ(q)) =

1
2
hdI(q)(·)u,ui 2 T ⇤

q Q,

where — is the covariant derivative corresponding to the Riemannian metric. We note
that ker(I(q)) = gq and im(I(q)) = g

�
q, therefore, ` is hyperregular if and only if the action

is infinitesimally free, i.e., gq = {0}.
In the hyperregular case, we obtain the Hamiltonian h : g⇤⇥Q ! R, given by

h(µ,q) =
1
2
⌦
µ,I(q)�1

µ

↵
, (7.20)

and the Hamiltonian H : T ⇤Q ! R reads

H(aq) = h(J(aq),q) =
1
2
⌦
J(aq),I(q)�1J(aq)

↵
.

Can extend to the nonregular case.
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8 Optimal control on Stiefel manifolds

An optimal control problem on Stiefel manifolds is introduced and studied in Bloch,
Crouch, Sanyal, as a generalization of the geodesic flow on the sphere (case n = 1) and the
motion of the free N-dimensional rigid body (case n = N). In Gay-Balmaz and Ratiu this
problem was generalized to arbitrary Lagrangians and formulated as a Clebsch optimal
control problem of the form (7.1).

Here we show that the Clebsch optimal control problem on Stiefel manifolds offers a
unified point of view for the formulation of several integrable systems. These systems turn
out to be associated to two classes of cost functions. From this setting, we also deduce a
geodesic interpretation of the solution of some of these integrable systems.



8 Optimal control on Stiefel manifolds 42

Stiefel manifolds:
For n  N, define the Stiefel manifold Vn(RN) to be the set of orthonormal n-frames in

RN (i.e., an ordered set of n orthonormal vectors). So, Vn(RN) is the set of linear isometric
embeddings of Rn into RN. Let SN�1 denoted the unit sphere in RN. Since Vn(RN)⇢

�
SN�1

�n

is closed, it follows that Vn(RN) is compact. Collect the n vectors of an orthonormal frame
in RN as columns of a N ⇥n matrix Q 2Vn(RN). If Mat(N ⇥n) denotes the vector space of
matrices having N rows and n columns, then the Stiefel manifold can be described as

Vn(RN) = {Q 2 Mat(N ⇥n) | QTQ = In}, (8.1)

where In is the n⇥n identity matrix. The dimension of Vn(RN) is Nn� (n+1)n/2.
The characterization (8.1) of Vn(RN) immediately shows that if n = 1, then V1(RN) =

SN�1 and if n = N, then VN(RN) = O(N), the group of orthogonal isomorphisms of RN.
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The tangent space at Q 2Vn(RN) to the Stiefel manifold Vn(RN) is given by

TQVn(RN) = {V 2 Mat(N ⇥n) |VTQ+QTV = 0}. (8.2)

We identify T ⇤Vn(RN) with TVn(RN) using the pairing T ⇤
QVn(RN)⇥TQVn(RN) 3 (PQ,VQ) 7!

Trace
�
PT

QVQ
�
2 R for every Q 2Vn(RN).

Remark 8.1. It is also known that

Vn(RN) = SO(N)/SO(N �n)! SO(N)/(SO(n)⇥SO(N �n)) =: fGrn(RN)

is a principal SO(n)-bundle, where fGrn(RN) is the Grassmannian of oriented n-planes in RN.
The notation Grn(RN) is reserved for the Grassmannian of n-planes in RN (regardless of ori-
entation).

Note that for N > 1, V1(RN) = SN�1 = fGr1(RN), while Gr1(RN) = RPN�1. ⌃
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8.1 Clebsch optimal control on Stiefel manifolds

From now on, we assume that n < N. We consider the right SO(N)-action on Vn(RN) given
by Q 7! R�1Q for R 2 SO(N). The infinitesimal generator of this action is UVn(RN)(Q) =
�UQ 2 TQVn(RN), U 2 so(N).

Given Q0,QT 2Vn(RN), the Clebsch optimal control problem (7.1) reads

min
U(t)

Z T

0
`(U(t),Q(t))dt (8.3)

subject to the following conditions:
(A) Q̇(t) =�U(t)Q(t);
(B) Q(0) = Q0 and Q(T ) = QT .

We identify the dual so(N)⇤ with itself using the non-degenerate pairing so(N)⇥so(N)3
(U1,U2) 7! Trace(UT

1 U2) 2 R. The cotangent bundle momentum map J : T ⇤Vn(RN) !
so(N)⇤ is easily verified to be

J(Q,P) =
1
2
�
QPT�PQT

�
.
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The optimal control is thus given by d`/dU =
�
QPT�PQT

�
/2 (see (7.2)). The cotangent

lifted action on T ⇤Vn(RN) reads (Q,P) 7! (RTQ,RTP) and hence Hamilton’s equations (7.2)
become

Q̇ =�UQ, Ṗ =�UP+
d`

dQ
, (8.4)

in this particular case. Recall that here d`/dQ 2 T ⇤
QVn(RN) denotes the functional deriva-

tive of ` relative to the above defined pairing. The optimal control U , given algebraically
by d`/dU =

�
QPT�PQT

�
/2, is necessarily the solution of the Euler-Poincaré equation

(7.3) given in this particular case by

d
dt

d`

dU
=


d`

dU
,U
�
+

1
2

 
Q
✓

d`

dQ

◆T

� d`

dQ
QT

!
. (8.5)
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Example 1: N-dimensional free rigid body:
We consider as a cost function the free rigid body Lagrangian `(U) = 1

2 hU,J(U)i, where
J(U) = LU +UL, L = diag(L1, . . .LN), Li +L j > 0 for i 6= j. The corresponding Clebsch
optimal control falls into the setting discussed earlier.

Since
M :=

d`

dU
= J(U),

d`

dQ
= 0,

equations (8.4) and (8.5) become

Q̇ =�UQ, Ṗ =�UP (8.6)

and
Ṁ = [M,U ], where M = J(U) =

1
2
�
QPT�PQT

�
.

From Corollary 7.4, the solution Q(t) is a geodesic on the SO(N)-orbit of Q(0) in Vn(RN),
relative to the normal metric induced by the inner product g(U,V ) := hU,J(V )i on this
orbit.
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The free rigid body equations Ṁ = [M,U ], M = J(U) = LU +UL on so(N), and in-
deed their generalization on any semisimple Lie algebra, are integrable, see Mischenko
and Fomenko (1976). A key observation in this regard, pointed out for the first time in
Manakov (1976), was that one can write the generalized rigid body equations as a Lax
equation with parameter:

d
dt
(M+lL2) = [M+lL2,U +lL]. (8.7)

The nontrivial coefficients of l in the traces of the powers of M+lL2 then yield the right
number of independent integrals in involution to prove integrability of the flow on the
generic coadjoint orbits of SO(n) (see also Ratiu 1980).

Equation (8.7) is of the form L̇ = [L,B] with L expressed in terms of the canonical vari-
ables as L(Q,P) = 1

2

�
QPT�PQT

�
+L2

l .
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Example 1A: symmetric representation of the N-dimensional free rigid body. Consider
the special case n = N �1, i.e. VN�1(RN) = SO(N). Note that if the initial condition P(0) 2
SO(N), then the solution (Q(t),P(t)) of (8.6) preserves SO(N)⇥SO(N). Since in this case
the formulation (8.6) of the free rigid body equation is symmetric in Q and P, it is called
the symmetric representation of the rigid body on SO(N)⇥SO(N). As before, if (Q,P) is a
solution of (8.6), then (Q,M), where M = J(U) and U = �Q̇Q�1, satisfies the rigid body
equations Q̇ = �UQ, Ṁ = [M,U ] (see Bloch, Crouch, Marsden and Ratiu for a study of
this system and its discretization).
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Example 1B: n = 1, the rank 2 free rigid body. We compute equations (8.4) and (8.5) for
the case n = 1, i.e., V1(RN) = SN�1. For (q,p) 2 T ⇤SN�1 we get

q̇ =�Uq, ṗ =�Up

and
Ṁ = [M,U ], where M = J(U) =

1
2
(q⌦p�p⌦q) . (8.8)

Note that, generically, M has rank 2. Associated to the Manakov equation (8.7), Moser
introduces the Lax pair matrices L and B given by

L(q,p) = L2+aq⌦q+bq⌦p+ cp⌦q+dp⌦p,
B(q,p) = J�1(q⌦p�p⌦q)+lL,

(8.9)

with a = d = 0, b = �c = 1
2l

. For these values of the parameters, the expression of the
matrix L in (8.9) is reminiscent of the expression of the momentum map (8.8) arising
from the Clebsch optimal control formulation. We have

J�1(q⌦p�p⌦q) =
qip j �q j pi

2(Li+L j)
.
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Recall that the equations for the rank 2 free rigid body arise from an optimal control
problem on SN�1, rather than on the orthogonal group: minimize 1

2

R T
0 hU,J(U)idt, where

U is a skew symmetric control, subject to q̇ =�Uq as in (7.1).
From the result of Corollary 7.4, the curve q(t) 2 SN�1 (there is only one orbit for n =

1) is a geodesic on SN�1 relative to the normal metric induced from the inner product
g(U,V ) := hU,J(V )i.
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Example 2:
We consider as a cost function the expression

`(U,Q) =
1
2
hLUQ,UQi�V (Q), (8.10)

where L is a given symmetric positive definite N ⇥N matrix and V 2 C•(Vn(RN)). The
case V = 0 is the geodesic problem. The first term in (8.10) is the kinetic energy associated
to the Riemannian metric g on Vn(RN) defined by

gQ(V,W ) = hLV,W i= Tr(VTLW ) V,W 2 TQVn(RN).

In each of the examples mentioned below, the Clebsch optimal control formulation al-
lows us to efficiently derive the explicit form of geodesic equations; see (8.14), (8.18). This
approach also yields a natural setting for generalizing certain integrable systems from
the sphere to the Stiefel manifold, such as the C. Neumann problem.
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Hamilton’s equations (7.2) become in this case

Q̇ =�UQ, Ṗ =�UP+[QQT,ULU ]Q� dV

dQ
. (8.11)

The corresponding Euler-Poincaré equations (8.5) are

Ṁ = [M,U ]+
1
2
[ULU,QQT]� 1

2

 
Q
✓

dV

dQ

◆T

� dV

dQ
QT

!
, (8.12)

where M = d`
dU = 1

2

�
QQTUL+LUQQT

�
= 1

2

�
QPT�PQT

�
.
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Example 2A: n = 1, V = 0, geodesics on the ellipsoid. Let us consider the case n = 1, i.e.,
V1(RN) = SN�1. The geodesic flow on SN�1 for the metric g(q)(u,v) := hu,Lvi, for q 2 SN�1,
u,v2 TqSN�1 is equivalent to the geodesic flow on the ellipsoid q̄TL�1q̄= 1, with q=L�1/2q̄.
Equations (8.11) and (8.12) yield

q̇ =�Uq, ṗ =�U p+[qqT,ULU ]q, Ṁ = [M,U ]+
1
2
[ULU,qqT] (8.13)

where M = d`/dU = 1
2

�
qqTUL+LUqqT

�
= 1

2

�
qpT� pqT

�
.

We now deduce from (8.13) the geodesic equations for the ellipsoid (see Theorem 7.1,
(7.2)). Using the equality M = 1

2

�
qqTUL+LUqqT

�
, we get

ṀL�1q =
1
2
�
qqTU2q+LU̇q(qTL�1q)�LU2q(qTL�1q)+LUq(qTUL�1q)

�

from where we solve for U̇q, which inserted in q̈ =�U̇q+U2q yields

q̈ =
�
�2L�1ṀL�1q+L�1qqTU2q+UqqTUL�1q

�
(qTL�1q)�1.
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Now, we replace in this formula Ṁ by its expression in (8.13) and we get the geodesic
equations

q̈ =� |q̇|2

qTL�1q
L�1q. (8.14)

The geodesic equations on the triaxial ellipsoid were solved by Jacobi. The complete
solution is found in his course notes.

Remark 8.2. As a particular case, the geodesic equations on the sphere (L = IN), are q̈ =
�|q̇|2q. ⌃
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Example 2B: V = 0, geodesics on the Stiefel manifolds. When V = 0, (8.11) and (8.12)
yield

Q̇ =�UQ, Ṗ =�UP+[QQT,ULU ]Q, Ṁ = [M,U ]+
1
2
[ULU,QQT], (8.15)

where M = d`/dU = 1
2

�
QQTUL+LUQQT

�
= 1

2

�
QPT�PQT

�
.

We now deduce from (8.15) the geodesic equations for the Stiefel manifolds (see Theo-
rem 7.1, (7.2)). A direct computation yields

ṀL�1Q =
1
2
�
�UQQTUQ+QQTU2Q+L(U̇Q)�LU2Q(QTL�1Q)

+LUQ(QTUL�1Q)
�
, (8.16)

where the linear operator L on the vector space of N ⇥n matrices is defined by

L(X) := QQTX +LXQTL�1Q. (8.17)

Note that if L = IN, then L(X) = (IN +QQT)X .
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We study the properties of the operator L : Mat(N⇥n)! Mat(N⇥n), where Mat(N⇥n)
denotes the real vector space of matrices with N rows and n columns. Recall that Mat(N⇥
n) has the natural inner product hhA,Bii := Tr

�
ATB

�
. A direct computation shows that L

is a linear symmetric operator relative to the inner product:

hhL(X),Y ii= hhX ,L(Y )ii= Tr
�
XTQQTY

�
+Tr

�
XTLY QTL�1Q

�
.

In particular,
hhL(X),Xii=

⌦⌦
QTX ,QTX

↵↵
+Tr

�
XTLXQTL�1Q

�
.

Note that QTL�1Q is a symmetric positive definite matrix because L is a symmetric posi-
tive definite matrix and Q 2Vn(RN). Therefore, there is a symmetric positive definite n⇥n
matrix R such that R2 = QTL�1Q. Hence the previous expression becomes

hhL(X),Xii=
⌦⌦

QTX ,QTX
↵↵
+Tr

�
(XR)TL(XR)

�

and we note that each summand is � 0. Hence hhL(X),Xii = 0 ) Tr
�
(XR)TL(XR)

�
= 0.

Since L is positive definite, we conclude that XR = 0 which implies that X = 0 because R is
invertible. We conclude that L : Mat(N ⇥n)! Mat(N ⇥n) is a symmetric positive definite
operator and hence invertible.
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Returning to (8.16), we isolate
�
U̇Q

�
, replace in this formula Ṁ by (8.15), and we get

L
�
Q̈
�
= L

�
�U̇Q+U2Q

�
= 2QQTU2Q

(8.15)
= �2QQ̇TQ̇, (8.18)

which are the geodesic equations on the Stiefel manifold.

Remark 8.3. When n = 1, (8.18) coincide with (8.14). Indeed, in this case (8.18) becomes

q
�
qTq̈

�
+Lq̈

�
qTL�1q

�
=�2qq̇Tq̇, q 2 SN�1.

Since qTq = 1 we have qq̈T+ q̇Tq̇ = 0, which then implies the geodesic equations on the ellip-
soid (8.14). ⌃
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Example 2C: n = 1, L = IN, V (q) = 1
2Aq · q, A := diag(a1, . . . ,aN), the C. Neumann prob-

lem. We now study the motion of a point on the sphere SN�1 under the influence of the
quadratic potential 1

2Aq ·q. For N = 3 the associated Hamilton equations were shown to be
completely integrable by Carl Neumann ; for general N and a study of various geometric
and dynamic aspects of this problem see Uhlenbeck, , Moser, Adler and Van Moerbeke
and Ratiu.

Since q̇ =�Uq, the Lagrangian of this system is

`(U,q) =
1
2

q̇Tq̇� 1
2

qTAq =�1
2

qT
�
U2+A

�
q (8.19)

and hence
d`

dU
=

1
2
�
qqTU +UqqT

�
,

d`

dq
=�(U2+A)q+q(qT(U2+A)q).

Since M := d`
dU , (8.5) implies

Ṁ = [M,U ]+
1
2
[U2+A,qqT]. (8.20)
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On the other hand, using the definition of M, we get Ṁq = 1
2(qqTU2q+U̇q�U2q) which

yields the equations of motion for the Neumann system

q̈ =�2Ṁq+qqTU2q
(8.20)
= �Aq+

�
Aq ·q� |q̇|2

�
q. (8.21)
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Example 2D: L = IN, V (Q) = 1
2 hhAQ,Qii, A := diag(a1, . . . ,aN), the C. Neumann problem

on Stiefel manifolds. We now consider the motion of a point on the Stiefel manifold Vn(RN)
under the influence of the quadratic potential V (Q) = 1

2 hhAQ,Qii, where we can assume,
without loss of generality, that A = diag(a1, . . . ,aN). We work in the generic case when
ai 6= 0 for all i = 1, . . . ,N.

Since Q̇ =�UQ, the Lagrangian of this system is

`(U,Q) =
1
2

Tr
�
Q̇TQ̇

�
� 1

2
Tr
�
QTAQ

�
=�1

2
Tr
�
QT

�
U2+A

�
Q
�

(8.22)

and hence
d`

dU
=

1
2
�
QQTU +UQQT

�
,

d`

dQ
=�(U2+A)Q+Q(QT(U2+A)Q).

Since M := d`
dU , (8.5) implies

Ṁ = [M,U ]+
1
2
[U2+A,QQT]. (8.23)
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On the other hand, using the definition of M, we get

ṀQ =
1
2
�
QQTU2Q+L(U̇Q)�U2Q

�
, (8.24)

where L(X) := (IN +QQT)X , for X 2 Mat(N ⇥ n) (see (8.17)). Using (8.24), (8.23), and
2M = QQTU +UQQT, we get L

�
Q̈
�
= L

�
�U̇Q+U2Q

�
=�2QQ̇TQ̇�AQ+QQTAQ, which

yield the equations of motion for the Neumann system on Vn(RN)

Q̈ = (IN +QQT)�1��2QQ̇TQ̇�AQ+QQTAQ
�
. (8.25)

These equations for A = 0 coincide with (8.18) and for n = 1 with (8.21).
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9 Clebsch optimal control formulation for the flows on symmetric matrices

Given N 2 so(n), the system (Bloch Iserles (2006), Bloch, Brinzenesco, Iserles, Marsden
and Ratiu (2009) is the ordinary differential equation on the space sym(n) of n⇥ n sym-
metric matrices given by

Ẋ = [X2,N], X(t) 2 sym(n). (9.1)

Assume that N is invertible, n = 2k, and consider the symplectic group

Sp(2k,N�1) :=
�

Q 2 GL(2k,R) | QTN�1Q = N�1 (9.2)

with Lie algebra sp(2k,N�1) = {U 2 gl(2k) |UTN�1+N�1U = 0}. The system (9.1) can be
written as the Euler-Poincaré equation on sp(2k,N�1) for the Lagrangian

`(U) =
1
2

Tr((N�1U)2). (9.3)
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Indeed, using the identification sp(2k,N�1)⇤ := sym(2k) with duality pairing hhX ,Uii=
Tr(XN�1U) for X 2 sym(2k) and U 2 sp(2k,N�1), we have d`/dU = N�1U and ad⇤

U X =
XN�1UN�UX , so the Euler-Poincaré equation d

dt
d`
dU = ad⇤

U
d`
dU becomes N�1U̇ =N�1UN�1UN�

UN�1U . Setting X := N�1U , we recover (9.1). As a consequence, (9.1) describes left in-
variant geodesics on the Lie group (9.2).

When N is not invertible, then (9.1) describes left invariant geodesics on the Jacobi
group and its generalizations; see Gay-Balmaz and Tronci.
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9.1 Clebsch optimal control formulation

Assume that N is invertible and consider the right action of the group Sp(2k,N�1) by
multiplication on GL(2k,R). Consider the cost function ` : sp(2k,N�1)!R given in (9.3).
The associated Clebsch optimal control problem is

min
Z T

0
`(U)dt, subject to Q̇ = QU, Q(0) = Q0, Q(T ) = QT .

Conditions (7.2) read
d`

dU
= J(Q,P) =

1
2
(PTQN +(QN)TP), Q̇ = QU, Ṗ =�PUT, (9.4)

with respect to the duality pairing hP,V i :=Tr(PTV ), for V 2TQGL(2k,R) and P2T ⇤GL(2k,R).
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By Theorem 7.1, if Q,P satisfy the last two equations in (9.4), then X = d`
dU verifies the

equations (9.1). Let’s check this directly. We compute

2Ẋ = 2N�1U̇ =
d
dt
�
PTQN �NQTP

�

(9.4)
= �UPTQN +PTQUN �NUTQTP+NQTPUT

=�U
�
PTQN �NQTP

�
+
�
PTQN �NQTP

�
N�1UN

= 2
�
XN�1UN �UX

�
= 2

⇥
X2,N

⇤

since U = NX , as stated.
This approach generalizes to the right action of Sp(2k,N�1) on gl(2k,R) or, more gen-

erally, on the space Mat(n⇥2k) of rectangular n⇥2k matrices.
Note that (9.1) is equivalent to the following Lax equation with parameter

d
dt
(X +lN) =

⇥
X +lN,NX +XN +lN2⇤ . (9.5)
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In this case, the Lax equation with parameter L̇ = [L,B] has L(Q,P) := PTQN�NQTP+
Nl . For example, if n = 1, i.e., q 2 R2k (seen as a row), then we have

d`

dU
=

1
2
(p⌦qN +qN ⌦p)
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9.2 Symmetric representation of the flow on symmetric matrices

Since U 2 sp(2k,N�1), the last two equations in system (9.4) are equivalent to

Q̇ = QU, ṖN�1 = (PN�1)U,

which shows that if U 2 sp(2k,N�1) and the initial conditions (Q(0),P(0)N�1)2 Sp(2k,N�1)⇥
Sp(2k,N�1), then (Q(t),P(t)N�1) 2 Sp(2k,N�1)⇥Sp(2k,N�1).

Since d`/dU = X = N�1U , the Hamiltonian h : sym(2k)! R has the expression

h(X) := hhX ,Uii� `(U) =
1
2

Tr(X2).

Therefore, using (9.4), the Hamiltonian H : T ⇤
gl(2k,R)! R is

H(Q,P) := h(J(Q,P)) =
1
8

Tr
⇣�

PTQN �NQTP
�2
⌘
. (9.6)

By Theorem 7.1, we get the following result.
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Proposition 9.1. Consider the canonical Hamiltonian system on T ⇤
gl(2k,R) with the symplec-

tic structure
Wcan((Q1,P1),(Q2,P2)) = Tr(PT

2 Q1�PT
1 Q2) (9.7)

and Hamiltonian (9.6). Then its solutions are mapped by J : T ⇤
gl(2k,R) ! sym(2k) to in-

tegral curves of the system (9.1). The flow generated by (9.6) preserves the submanifold�
(Q,P) 2 gl(2k,R)⇥gl(2k,R) | Q,PN�1 2 Sp(2k,N�1)

 
.
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10 Clebsch optimal control formulation for the finite Toda lattice

Consider a complex semisimple Lie algebra g

C, its split normal real form g, and the de-
composition g = b�� k, where k is the compact normal Lie algebra and b� a Borel Lie
subalgebra – see Bloch, Gay-Balmaz and Ratiu.

Let us quickly recall how the full Toda equation can be viewed as the Euler-Poincaré
equation on the Lie algebra b� for the Lagrangian `(U) = 1

2k(U,U), with k the Killing
form. If we identify the dual Lie algebra as (b�)⇤ = k

? by using k , we have d`/dU =
p

k

?(U) and ad⇤
U µ =�p

k

? ([U,µ]), so the Euler-Poincaré equation reads

p

k

?(U̇) =�p

k

? ([U,p
k

?(U)]) (10.1)

Note that (p
b�)|

k

? : k? ! b� is an isomorphism with inverse (p
k

?)|
b� : b� ! k

?.
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We can rewrite the right hand side as

p

k

? ([U,p
k

?(U)]) = p

k

? ([p
b�p

k

?(U),p
k

?(U)])

= p

k

? ([p
k

?(U)�p

k

p

k

?(U),p
k

?(U)])

=�p

k

? ([p
k

p

k

?(U),p
k

?(U)])

=� [p
k

p

k

?(U),p
k

?(U)] ,

so defining µ := p

k

?(U), by using the isomorphism (p
b�)|

k

? : k?! b�, we can rewrite (10.1)
as

µ̇ = [p
k

(µ),µ],

which is the full Toda equation.
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10.1 Clebsch optimal control formulation for Ar -Toda lattice

We first study to the Ar -Toda system. In this case, B� is the group of lower triangular
(r+ 1)⇥ (r+ 1) matrices with determinant 1 and strictly positive diagonal elements; b�
is the Lie algebra of lower triangular traceless matrices; k is the Lie algebra of skew-
symmetric matrices; b?� consists of strictly lower triangular matrices; and k

? consists of
symmetric traceless matrices. Given U 2 g= sl(r+1,R), we have

p

b�(U) =U�+UT
+ +U0, p

k

(U) =U+�UT
+,

where the indices ± and 0 on the matrices denote the strictly upper, lower, and diagonal
part, respectively. For X 2 g

⇤ = sl(r+1,R), we have
p

b

?
�
(X) = X��XT

+, p

k

?(X) = XT
+ +X0+X+.

We consider the action of B� by multiplication on the right on SL(r + 1,R) and use
the duality pairing between T SL(r + 1,R) and T ⇤SL(r + 1,R) given by the bi-invariant
extension of the Killing form. For P,V 2 TQSL(r+1,R), we have hP,V i := Tr(Q�1PQ�1V ).
With respect to this pairing, the momentum map is

J : T SL(r+1,R)! k

?, J(Q,P) = p

k

?(Q�1P).
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The associated Clebsch optimal control problem, with cost function `(U) = 1
2k(U,U),

yields (see (7.2)),
Q̇ = QU, Ṗ = PU, p

k

?(U) = p

k

?(Q�1P). (10.2)

The first two equations represent the symmetric representation of the Ar - Toda lattice. In
particular, the solution curve (Q(t),P(t)) preserves B� ⇥B� similarly to the rigid body
case.
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10.2 Clebsch optimal control formulation for the Toda lattice associated to an arbitrary Dynkin diagram

For the general Toda system, we let B� act on the right on G (the connected Lie group
underlying the split normal real form). We identify T ⇤G with T G by using the bi-invariant
duality pairing h ,i

k

induced by k .
In this case, the momentum map is given by

J : T ⇤G = T G ! k

?, J(aQ) = p

k

?(T LQ�1aQ),

where we have aQ 2 TQG = T ⇤
QG. Indeed,

k(J(aQ),U) = haQ,T LQUi
k

=
⌦
T LQ�1aQ,U

↵
k

= k(T LQ�1aQ,U)

= k(p
k

?(T LQ�1aQ),U).

For the non exceptional cases at least, the formulas can be written more explicitly since G
is given by matrix groups: for Ar,Br,Cr,Dr we have:

G = SL(r�1,R), G = SO(r+1,r), G = Sp(2r,R), G = SO(r,r)

and the Killing form is given by a multiple of the trace: k(X ,U) = cTr(XU). In this case,
the momentum map reads J(Q,P) = p

k

?(Q�1P).
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The associated Clebsch optimal control problem with cost function `(U) = 1
2k(U,U)

yields the same equations as in (10.2), understood now in the general sense of Ar,Br,Cr,Dr.
The first two equations being the symmetric representation of the Toda equations. From
these conditions, one directly obtains:

d
dt

p

k

?(Q�1P) = p

k

?(�Q�1Q̇Q�1P+Q�1Ṗ) = p

k

?(�UQ�1P+Q�1PU)

=�p

k

?([U,Q�1P]) =�p

k

?([U,p
k

?(Q�1P)+p

b

?(Q�1P)])
=�p

k

?([U,p
k

?(Q�1P)] =�p

k

?([U,p
k

?(U)],

which is the full Toda equation in Euler-Poincaré form (10.1).
As earlier, the solution curve (Q(t),P(t)) preserves the set B�⇥B�.
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11 Discrete Models

The symmetric representation of the discrete rigid body:
The Clebsch approach leads to a natural symmetric representation of the discrete rigid

body equations of Moser and Veselov. We now define the symmetric representation of the
discrete rigid body equations as follows:

Qk+1 =�UkQk; Pk+1 =�UkPk , (11.1)

where Uk 2 SO(N) is defined by

LUk �UT
k L = QkPT

k �PkQT
k . (11.2)

We will write this as
JDUk = QkPT

k �PT
k QT

k , (11.3)

where JD : SO(N) ! so(N) (the discrete version of J) is defined by JDU = LU �UTL.
Notice that the derivative of JD at the identity is J and hence, since J is invertible, JD is a
diffeomorphism from a neighborhood of the identity in SO(N) to a neighborhood of 0 in
so(N).
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Using these equations, we have the algorithm (Qk,Pk) 7! (Qk+1,Pk+1) defined by: com-
pute Uk from (11.2), compute Qk+1 and Pk+1 using (11.1). Note that the update map for Q
and P is done in parallel.
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11.1 The Discrete Variational Problem in the Stiefel case

The discrete variational problem on the Stiefel manifold is given by

min
Qk

Â
k

1
2
hLQk+1,Qki, (11.4)

subject to QT
k Qk = In, i.e., Qk 2 Vn(RN). The extremal trajectories for this discrete varia-

tional problem are given by

LQk+1+LQk�1 = QkBk, k 2 Z, (11.5)

where Bk = BT
k is a (symmetric) Lagrange multiplier matrix for the symmetric constraint

QT
k Qk = In. Let us define Uk :=�QkQT

k�1 which implies that

Qk =�UkQk�1,

Then the following proposition gives the discrete extremal trajectories in terms of Uk and
the discrete body momentum Mk := LUk �UT

k L.
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Proposition 11.1. The extremal trajectories of the discrete variational problem (11.8) on the
Stiefel manifold Vn(RN) in terms of (Mk,Uk) are given by:

Mk+1 =UkMkUT
k +Ak, (11.6)

where
Ak :=UkL

�
IN �UkUT

k
�
�
�
IN �UkUT

k
�
LUT

k . (11.7)
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11.2 Discrete variational problem for the flows on symmetric matrices:

The natural optimization problem for the flow on symmetric matrices is

min
Uk

Â
k

1
2
hN�1Uk,N�1Uki, (11.8)

subject to Qk+1 = QkUk.
Here, as in the smooth case

�
Qk 2 GL(2k,R) | QT

k N�1Qk = N�1 . (11.9)

Thus we have
QT

k N�1Qk+1 = N�1Uk (11.10)

and hence the optimization problem may be reformulated as

min
Qk

Â
k

1
2
hQT

k N�1Qk+1,QT
k N�1Qk+1i, (11.11)

subject to
QT

k N�1Qk = N�1 . (11.12)
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Choosing a skew symmetric matrix Bk of Lagrange multipliers we see that the relevant
equations take the form

N�1Qk+1Qk+1N�1Qk +N�1Qk�1Qk�1N�1Qk +N�1QkBk = 0. (11.13)

This gives a natural analogue of the Moser Veselov equations.
There is much more on the connection with Moser...
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Abstract

In this talk we discuss recent work on a geometric approach to certain optimal control problems and the

relationship of the solutions of these problems to some classical integrable dynamical systems. These systems

include the rigid body equations, geodesic flows on the ellipsoid and the Toda lattice flows. We discuss the

Hamiltonian structure of these systems and relate our work to some classical work of Moser. We also discuss the

link to discrete dynamics and symplectic integration. The work is joint with Francois Gay-Balmaz and Tudor

Ratiu.

1 Lecture notes

Links to the talk of Melvin Leok from yesterday.
Symmetric rigid body equations - alternative formulation of the rigid body equations, related to discrete dy-

namics.
Rigid body equations can be written as a Lax pair form Ṁ = [M,Ω]. Λ - matrix of the angular momentum.
Toda flow - arises from study of particles on a line. Gradient form - Ẋ = [X, [X,N ]].
n-dimensional rigid body: I - inertia matrix, Ω - matrix of angular velocities. Evolves on the momentum sphere.

Has three equilibria, two stable and one unstable, around rotation directions.
Dynamics can be written as an Euler-Poincare form, or in Hamiltonian form.
In n dimensions, look at the rigid body equations on SO (n). M is a general skew-symmetric matrix, Ω is the

angular velocity, and the symmetric operator J relates the two. This is an integrable system that can be solved in
various ways.

This can be generalized to any semi-simple Lie group. That is the so-called left-invariant system.
It can also be formulated as a right-invariant system by simple transformations and a sign change.
Symmetric rigid body equations: Related to optimal control problems and discrete dynamics. First we will

derive them “out of thin air”.
Q - configuration variable, P - momentum variable that can be thought of as a dual variable to Q.
M is skew symmetric (by construction), so instead of the original rigid body equations we have these square

equations.
Proposition 2.1 is proved by simple computation - substitute these equations into the derivative of the classical

rigid body equations.
Are they exactly equivalent? They are not exactly equivalent; the equations are topologically different, but they

are very close. Solutions from one set of equations can be mapped to the other (in both directions). On any level
set of momenta, they give the exact same dynamics.

How is this related to optimal control and discrete dynamics?
Optimal control - reminder: Given an affine control system, many times people consider kinematic systems

where the drift vector field f (x) is zero. The controls may be bounded or un-bounded, and the main difference
between control systems and ODE’s is that in control systems the endpoints are pre-determined.

Pontryagin maximum principle - H∗ is the optimal Hamiltonian producing the optimal dynamics.
Can ask, is the system solvable? Can one explicitly find the controls? Generally, the equations cannot be solved.

Here, we look at the solvable case, solvable in the classical Hamiltonian way - Arnold-Liouville integrable.
Optimal control formulation of rigid body (page 16) - ⟨U, J (U)⟩ is the cost function. P is the costate vector

that enforces the kinematics, it is the constraint. In fact, the symmetric rigid body equations presented before were
originally found by solving this optimal control problem.

This is related to discrete variational problems.
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Page 19 - the discrete Euler-Lagrange equations.
They can be rewritten with Φ, a type of forward map.
Discrete rigid body equations of dimension n = DRBn.
Here, Ωk are group elements in SO (n).
The discrete symmetric rigid body - cubic set of discrete equations. Looks like the original symmetric rigid body

equations. Locally, these equations are exactly the same.
This can also be intrinsically derived from the discrete optimal control problem.
Generalization - the Clebsch optimal control problem. Generating a cost function l, the control problem is solved

by a momentum map method resulting in a Hamiltonian formulation.
Observation: Dynamics come from an infinitesimal generator, so the problem can be reformulated on a G-orbit.
(page 35) There is a very nice metric that comes out of this - the normal metric. It is related to the Toda lattice.

It is complementary to the symplectic flow; it is the metric to be used in order to write down the gradient flow -
the dual flow.

(page 41) Stiefel manifolds - the framework (for non-square matrices) includes the rigid body equations and
other interesting problems.

(page 45) This is a generalization of the rigid body equations. For the rigid body equations, the last term
disappears (example 1).

The free rigid body system is integrable. How to find the corresponding integrals of motion? By rewriting the
equations as a Lax pair equation set (Mischenko and Fomenko paper).

This Clebsch optimal control on Steifel manifolds framework produces a rich family of integrable problems, from
geodesic flow on ellipsoids to the rigid body system.
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