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ROUGH OVERVIEW
OF THE RESULTS

• The space of smooth sections of a fiber bundle whose fibers
are symplectic manifolds (called symplectic fiber bundle) carries a
natural symplectic structure. The group of bundle automorphisms
acts symplectically on this space but does not admit a classical
momentum map.

• We introduce a new concept of a group-valued momentum map,
inspired by the Poisson Lie setting. The group-valued momentum
map assigns to every section of the symplectic fiber bundle a prin-
cipal circle-bundle. We study the properties of this group-valued
momentum map.
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• Many examples can be handled with this new momentum map:

⇧ obtain generalized Clebsch variables for fluids with integral helicity;

⇧ the anti-canonical bundle is the momentum map for the action
of symplectomorphisms on the space of compatible complex struc-
tures;

⇧ the Teichmüller moduli space is realized as a symplectic orbit
reduced space associated to a coadjoint orbit of SL(2,R) and spaces
related to the other coadjoint orbits are identified and studied;

⇧ the momentum map for the group of bundle automorphisms on
the space of connections over a Riemannian surface encodes, be-
sides the curvature, also topological information of the bundle.
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DETAILED OVERVIEW
OF THE RESULTS

Noether’s theorem states that every symmetry of a system gener-
ates a conservation law. In symplectic geometry formulation, these
conserved quantities are encoded in the momentum map.

The momentum map is not only important in dynamical systems
but is also a valuable tool in the study of di↵erential geometric
questions. Atiyah and Bott [1983] showed that the curvature of a
connection on a principal bundle over a Riemann surface furnishes
the momentum map for the action of the group of gauge transfor-
mations. They applied Morse theory to the norm-squared of the
momentum map (the Yang–Mills functional) in order to obtain the
cohomology of the moduli space of Yang–Mills solutions which, by
the Narasimhan–Seshadri theorem, can be identified with the mod-
uli space of stable holomorphic structures.
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Later, Fujiki [1992] and Donaldson [1997, 1999, 2003] provided a
momentum map picture for the relationship between the existence
of constant scalar curvature Kähler metrics and stability in the sense
of geometric invariant theory.

FIRST GOAL: Provide a framework which encompasses the gauge
theory setting of Atiyah and Bott [1983] together with the action
of di↵eomorphism groups of Fujiki [1992] and Donaldson [1997].

Starting point is a symplectic fiber bundle of the form F = P ⇥G F
for a principal G-bundle P ! M , where the typical fiber F is en-
dowed with a G-invariant symplectic form. The fiberwise symplectic
structure, combined with a volume form on the base M , induces
a symplectic form ⌦ on the space F of sections of F ! M . The
gauge group of P acts in a natural way on F , leaving the induced
symplectic form ⌦ invariant.

We show that the action possesses a momentum map which is
completely determined by the momentum map of the G-action on
the fiber F .
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If the bundle P is natural, i.e., it comes with a lifted Di↵(M)-action
to bundle automorphisms (for example, this is the case when P

is the frame bundle of M), then the group of volume-preserving
di↵eomorphisms acts on the space F of sections and leaves ⌦
invariant. A precise statement will be given later.

There are essentially two contributions to the momentum map.
The first term is the pull-back of the fiberwise symplectic struc-
ture. The second term involves the fiber momentum map and,
morally speaking, captures how much the lift of di↵eomorphisms
to bundle automorphisms shifts in the vertical direction. The in-
teresting point is that the momentum map for the automorphism
group on the infinite-dimensional space of sections is canonically
constructed from the finite-dimensional symplectic G-manifold F .
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In contrast to the case of the action of the gauge group, the mo-
mentum map for the symplectic action of the di↵eomorphism group
on the space of sections does not exist in full generality. Donald-
son [2000, 2003] already pointed this out. The obstruction has a
topological character, i.e., certain cohomology groups have to van-
ish. To remedy this situation, one usually restricts the actions to
certain “exact” subgroups, e.g., the subgroup of Hamiltonian dif-
feomorphisms in the group of all symplectomorphisms. Then, the
actions of these subgroups do admit classical momentum maps.

Working from a completely di↵erent point of view, similar observa-
tions were made by Gay-Balmaz and Vizman [2012] in their study of
the classical dual pair in hydrodynamics. In this case, the symplec-
tic action of volume-preserving di↵eomorphisms on a symplectic
manifold of mappings only has a momentum map under certain
topological conditions and one is forced to work with suitable cen-
tral extensions of the group of exact volume-preserving di↵eomor-
phisms.
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OUR POINT OF VIEW: The above mentioned topological obstruc-
tions are not a bug but a feature of the theory. The action of the
di↵eomorphism group interacts with, and is largely determined by,
the topological structure of the bundle. Thus, one would expect
to capture certain topological data (like characteristic classes) that
are “conserved” by the action and such “conservation laws” should
be encoded in the momentum map. Since the classical momentum
map takes values in a continuous vector space, there is no space
to “store” discrete topological information. Hence, whenever those
classes do not vanish, the momentum map does not exists.

SECOND GOAL: Turn these philosophical remarks into explicit

mathematical statements. In order to do this, we generalize the

notion of momentum maps allowing them to take values in groups.
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Our concept of a group-valued momentum map is inspired by the
Poisson Lie momentum map introduced in the 1990 thesis of Lu
and in Lu and Weinstein [1990]. The group-valued momentum
map introduced here is a vast generalization of many notions of
momentum maps appearing in the literature including circle-valued,
cylinder-valued, and Lie algebra-valued momentum maps. We show
that our generalized group-valued momentum map always exists for
the action of the di↵eomorphism group, without any topological
assumptions on the base but some integrability conditions on the
fiber model. The resulting momentum map captures topological
invariants of the geometry, exactly in (the dual of) those cohomol-
ogy classes which prevented the existence of a classical momentum
map. This approach of extending the definition of the momentum
map, besides the situation described above in Poisson geometry, in
order to capture conservation laws not available using the classical
definition, has been used successfully before in the theory of the
cylinder-valued and optimal momentum maps (Ortega and Ratiu
[2003]).
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Hydrodynamic example: Let (M,µ) be a closed (i.e., compact
connected, boundaryless) n-manifold with volume form µ (identi-
fied with the measure it defines, also denoted by µ) and (F,!) a
symplectic manifold. The space C1(M,F ) of smooth maps from
M to F carries the weak symplectic form

⌦�(X,Y ) =
Z

M
!�(m)(X(m), Y (m)) dµ(m),

where � 2 C1(M,F ) and X,Y 2 T�C
1(M,F ), i.e., X,Y : M ! TF

satisfy X(m), Y (m) 2 T�(m)F for all m 2 M . The natural action
by precomposition of Di↵µ(M), the group of di↵eomorphisms of M
preserving the volume form µ, leaves ⌦ invariant. If ! is exact, say
with primitive #, then the momentum map assigns the 1-form �⇤#
to a map � 2 C1(M,F ). Here, the space of volume-preserving vec-
tor fields Xµ(M) (the vector fields whose µ-divergence vanishes) is
identified with closed (n�1)-forms, i.e., Xµ(M)⇤ = ⌦1(M)/d⌦0(M).
More generally, Gay-Balmaz and Vizman [2012] showed that a (non-
equivariant) momentum map also exists when the pull-back of ! by
all maps � 2 C1(M,F ) is exact; for example, this happens when
H2(M) is trivial.
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Our generalized group-valued momentum map takes no longer val-
ues in Xµ(M)⇤, but instead in the Abelian group Ĥ2(M,U(1)) that
parametrizes principal circle bundles with connections modulo gauge
equivalence. If (F,!) has a prequantum bundle (L,#), then our
group-valued momentum map sends � to the pull-back bundle with
connection �⇤(L,#). We see that no (topological) restrictions have
to be made for M and only the integrability condition of the sym-
plectic form ! is needed for the existence of a group-valued mo-
mentum map. In contrast to the classical momentum map, a
Ĥ2(M,U(1))-valued momentum map contains topological informa-
tion. First, the Chern class of the bundle, as a class in H2(M,Z), is
available from the generalized momentum map. In our simple ex-
ample, this is just the integral refinement of �⇤!. A second class in
H1(M,U(1)) is related to the equivariance of the momentum map;
we will make all of this precise later on.
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Overview of the examples. Here, µ is a volume form and ! a
symplectic form. Moreover, Q ! M denotes a prequantum circle
bundle with connection � and P ! M is an arbitrary principal G-
bundle. The frame bundle is denoted by LM . We also abbreviated
the homogeneous space Sp(2n,R)/U(n) by Sp/U.
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Comments on the examples in the table

1.) Marsden and Weinstein [1983] construct Clebsch variables for
ideal fluids starting from a similar infinite-dimensional symplectic
system as discussed above. It turns out, that every vector field rep-
resented in those Clebsch variables has vanishing helicity, i.e., such
a fluid configuration has trivial topology and no links or knots. Our
more general framework allows to construct generalized Clebsch
variables for vector fields with integral helicity.

2.) When applied to the space of Lagrangian immersions, the
group-valued momentum map recovers the Liouville class as the
topological data. Thus, we realize moduli spaces of Lagrangian
immersions (and modifications thereof) as symplectic quotients.

3.) and 4.) Many examples with geometric significance are ob-
tained when the typical fiber F is a symplectic homogeneous space
G/H. In this case, sections of LM ⇥G F correspond to a reduction
of the G-frame bundle LM to H.
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Important case: the space of almost complex structures compat-
ible with a given symplectic structure, i.e., F = Sp(2n,R)/U(n).
In this case, the group-valued momentum map for the group of
symplectomorphisms assigns to an almost complex structure the
anti-canonical bundle. It was already observed by Fujiki [1992] and
Donaldson [1997] that the Hermitian scalar curvature furnishes a
classical momentum map for the action of the group of Hamiltonian
symplectomorphisms. Of course, the Hermitian scalar curvature is
the curvature of the anti-canonical bundle. Thus the group-valued
momentum map combines the geometric curvature structure with
the topological data of the anti-canonical bundle. For the case of
a 2-dimensional base manifold, we realize the Teichmüller moduli
space with the symplectic Weil–Petersson form as a symplectic orbit
reduced space.

5.) We extend the classical setting of Atiyah and Bott [1983] in
two ways. First, we generalize the gauge theoretic setting from 2-
dimensional surfaces to arbitrary symplectic manifolds as the base
(a similar extension was already discussed by Donaldson [1987]).
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Secondly, and more importantly, we determine the group-valued
momentum map for the action of the full automorphism group on
the space of connections. Besides the curvature, the group-valued
momentum map also encodes a torsion class in H2n(M,Z), that
arises from flat group homomorphisms Sp(2n,R)⇥G! U(1).

General comments

1.) In contrast to most papers discussing infinite-dimensional sym-
plectic geometry, we do not work formally, but really address the
functional analytical problems arising from the transition to the
infinite-dimensional setting. In particular, smoothness of maps be-
tween infinite dimensional manifolds is understood in the sense of
locally convex spaces as, for example, presented in Neeb [2006] or
the Russian school (Smolyanov).
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2.) Integrality of certain symplectic forms play a central role. To
a large extent, this assumption was made for convenience. Most
results carry directly over to symplectic forms with discrete period
groups per! ✓ R, without much technical e↵ort. In spirit, our
results also hold in the general setting without any assumptions
on the period group; however, then one is forced to work in the
di↵eological category because the quotient R/per! may no longer
be a Lie group.

3.) Most of our symplectic reduced spaces are obtained as (some-
times singular) orbit reduced spaces, a theory that is not yet present
in the literature for infinite dimensional systems, even though we
state theorems using it. However, the techniques in Diez [2018]
which completely treats infinite dimensional singular symplectic point
reduction, combined with the strategy in the book by Ortega and
Ratiu [2003] for finite dimensional singular symplectic orbit reduc-
tion, yields a general theory of infinite dimensional singular sym-
plectic orbit reduction, which is precisely what is needed here. This
is the focus of a future paper.
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GROUP-VALUED
MOMENTUM MAPS

Inspiration is the momentum map for Poisson Lie group actions.
Our group-valued momentum map is not built on the pattern from
the theory of quasi-Hamiltonian actions; in the Abelian case it ex-
tends this theory, but it is totally di↵erent for non-Abelian groups.

Poisson Lie group momentum maps

All manifolds and Lie groups are finite-dimensional. The theory is
due to Lu [1990], Lu and Weinstein [1990].

A Lie group G is a Poisson Lie group if it is simultaneously a Poisson
manifold and group multiplication and inversion are Poisson maps.
Let $G 2 X

2(G)(= bivector fields) denote the Poisson tensor of G.
Let (M,$M) be a Poisson manifold.
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A Poisson action of the Poisson Lie group G on (M,$M) is a smooth
(left) action G ⇥ M ! M which is, in addition, a Poisson map
(with G⇥M endowed with the product Poisson structure $G⇥$M .
(Functions on G Poisson commute with functions on M).

The Poisson tensor $G of a Poisson Lie group G, with Lie algebra
g, necessarily vanishes at the identity element e 2 G, which then
allows for the definition of the intrinsic derivative ✏ : g ! g ^ g by
✏(A) := (LX$G)e, where X 2 X(G) is an arbitrary vector field sat-
isfying Xe = A and LX denotes the Lie derivative in the direction
X. The dual map ✏⇤ : g⇤ ^ g

⇤ ! g

⇤ satisfies the Jacobi identity, thus
endowing g

⇤ with a Lie algebra structure. The unique connected
and simply connected Lie group G⇤ whose Lie algebra is g

⇤ is called
the dual group of G. The Lie group G⇤ has a unique Poisson struc-
ture $G⇤ relative to which G⇤ is a Poisson Lie group such that the
intrinsic derivative of $G⇤ is the Lie bracket on g. If G is connected
and simply connected, the intrinsic derivative ✏ is a cocycle which
uniquely determines both Poisson Lie tensors $G and $G⇤.
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Let G ⇥M ! M be a left Poisson action of the Poisson Lie group
(G,$G) on the Poisson manifold (M,$M). A smooth map J : M !
G⇤, if it exists, is called a momentum map of this action if

A⇤+$M

⇣

·, J⇤Al
⌘

= 0, for all A 2 g.

Here, A⇤ denotes the fundamental (or infinitesimal generator) vec-
tor field on M induced by the infinitesimal action of A 2 g, i.e.,

A⇤(m) :=
d

dt

�

�

�

�

t=0
exp(tA) ·m, for all m 2M,

where g ·m denotes the action of g 2 G on m 2M . The second term
in the definition is interpreted in the following way. Since g is the
dual of g⇤ (which is the Lie algebra of G⇤), we think of A as a linear
map on g

⇤ and hence it defines a unique left invariant one-form Al 2
⌦1(G⇤) whose value at the identity is A, i.e., (Al)a(v) =

D

A,La�1v
E

for every a 2 G⇤ and v 2 TaG⇤, where La�1 denotes both the left
translation by a�1 2 G⇤ in G⇤ and its tangent map on TG⇤.
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Assume now that the Poisson manifold (M,$M) is symplectic with
symplectic form ! and let us unwind the definition in this case. For
any Xm 2 TmM we have

!m(A⇤m,Xm) = ($M)m
✓

⇣

$
]
M

⌘�1
A⇤m,

⇣

$
]
M

⌘�1
Xm

◆

= �
⇣

J⇤Al
⌘

m
Xm

= �
⇣

Al
⌘

J(m)
(TmJ(Xm)) = �

D

A,LJ(m)�1TmJ(Xm)
E

= �hA, (�J)m(Xm)i ,
where TmJ : TmM ! TJ(m)G

⇤ is the derivative (tangent map) of
J : M ! G⇤ and �J 2 ⌦1(M, g⇤), defined by the last equality, is its
left logarithmic derivative.

Key observation: The identity !m(A⇤m,Xm)+ hA, (�J)m(Xm)i = 0
proved above does not use the Poisson Lie group structure on G.
This identity makes sense if the momentum map is replaced by a
smooth map J : M ! H with values in an arbitrary Lie group H, as
long as there is a duality between the Lie algebras of G and H. This
observation leads to our generalization of Lu’s momentum map.
To define this generalization, we need a few preliminary concepts,
inspired by their counterparts in the theory of Poisson Lie groups.
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Dual pairs of Lie algebras

A dual pair of Lie algebras (not necessarily finite dimensional) con-
sists of two Lie algebras g and h, which are in duality through a
given (weakly) non-degenerate bilinear map  : g ⇥ h ! R. Like in
functional analysis, we often write the dual pair as (g, h). Intu-
itively, we think of h as the dual vector space of g, endowed with
its own Lie bracket operation, so sometimes we write g

⇤ := h, even
though g

⇤ is not necessarily the functional analytic dual of g.

Two Lie groups G and H are said to be dual to each other if there
exists a bilinear form  : g⇥ h! R relative to which the associated
Lie algebras are in duality. We use the notation (G,H) in this case.
As for Lie algebras, we often write G⇤ := H, intuitively thinking of
G⇤ as the dual group, as in the theory of Poisson Lie groups.
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The notion of a dual pair of Lie algebras involves only the underly-
ing vector spaces, while the Lie brackets play no role. We introduce
a more rigid concept of duality, which takes all structures into ac-
count. For a given dual pair (g, h) of Lie algebras, define a bilinear
skew-symmetric bracket on the double d = g⇥ h by

[(A,µ), (B, ⌫)] = ([A,B]
g

� ad⇤µ B + ad⇤⌫ A, [µ, ⌫]
h

� ad⇤A ⌫ + ad⇤B µ),

for A,B 2 g, µ, ⌫ 2 h, where the infinitesimal coadjoint actions are
defined with respect to  by

(B, ad⇤A µ) = ([A,B]
g

, µ),

(ad⇤µ A, ⌫) = (A, [µ, ⌫]
h

).

However, this bracket does not satisfy the Jacobi identity, in general.
A dual pair (g, h) of Lie algebras is called a Lie bialgebra, if this
bracket on d = g ⇥ h is a Lie bracket. In this case, we denote the
double by g ./ h.
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Examples 1.) (g, h) dual pair with h Abelian, so the coadjoint
action ad⇤µ : g ! g is trivial for every µ 2 h. Hence the bracket on
the double d simplifies to [(A,µ), (B, ⌫)] = ([A,B]

g

,� ad⇤A ⌫+ad⇤B µ),
so d is the semidirect product goad⇤ h of Lie algebras, where g acts
on h by the -coadjoint action. The Jacobi identity always holds
and thus (g, h) is a Lie bialgebra.

2.) (Group of volume-preserving di↵eomorphisms) M be a compact
manifold with a volume form µ. Then the group G = Di↵µ(M) of
volume-preserving di↵eomorphisms is a Fréchet Lie group (already
known to Hamilton [1982]). Its Lie algebra is g = Xµ(M) := {X 2
X(M) | LXµ = 0}. Hence, we also identify Xµ(M) with ⌦dimM�1

cl (M)
via X 7! iXµ, where ⌦k

cl(M) denotes the space of closed k-forms on
M . Thus ⌦1(M)/d⌦0(M) is the regular dual with respect to the
weakly non-degenerate integration paring

(X,↵) := (�1)dimM�1
Z

M
(iXµ) ^ ↵ =

Z

M
(iX↵)µ.
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We now observe that a 1-form ↵ can be interpreted as a trivial
principal circle bundle with curvature d↵. From this point of view,
⌦1(M)/d⌦0(M) parametrizes equivalence classes of connections on
a trivial principal circle bundle. Thus, it is natural to think of it as
the Lie algebra of the Abelian group H := Ĥ2(M,U(1)) of all prin-
cipal circle bundles with connections, modulo gauge equivalence.
This heuristic argument can be made rigorous using the theory
of Cheeger-Simons di↵erential characters. So we get a dual pair
(Di↵µ(M), Ĥ2(M,U(1))) of Lie groups. For later use, it is con-
venient to introduce the notation ĥ

2(M,U(1)) for the Lie algebra
⌦1(M)/d⌦0(M) of Ĥ2(M,U(1)).

3.) (Group of symplectomorphisms) (M,!) compact symplectic
manifold. The group G = Di↵!(M) of symplectomorphisms is a
Fréchet Lie group (Kriegl and Michor [1997]) with Lie algebra

g = X!(M) := {X 2 X(M) | diX! = 0} 3 X
⇠ ! iX! 2 ⌦1

cl(M).
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Thus the regular dual with respect to the natural integration paring

(X,↵) :=
(�1)dimM�1

⇣

1
2 dimM � 1

⌘

!

Z

M
(iX!) ^ ↵

is ĥ

dimM(M,U(1)) := ⌦dimM�1(M)/d⌦dimM�2(M). The prefac-
tor in front of the integral turns out to be a convenient choice in
later computations. As in the case of volume-preserving di↵eomor-
phisms, the Abelian Lie algebra ĥ

dimM(M,U(1)) is integrated by
the group ĤdimM(M,U(1)) of Cheeger-Simons di↵erential charac-
ters with degree dimM . These can be thought of as equivalence
classes of circle n-bundles with connections in the sense of higher
di↵erential geometry.

Remark: Both Di↵µ(M), Di↵!(M) have an Abelian dual group.
Hence they are special cases of the first example; thus both dual
pairs (Xµ(M), ĥ2(M,U(1))) and (X!(M), ĥdimM(M,U(1))) are Lie
bialgebras.
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Ignoring the particularities of the infinite-dimensional setting for a
moment, Drinfeld’s theorem states that there are essentially unique
connected and simply connected Poisson Lie groups, whose Lie
algebras are Xµ(M) and X!(M), respectively. We do not know if
the groups Di↵µ(M) or Di↵!(M) carry a non-trivial Poisson Lie
structure integrating the above Lie bialgebras (this would require
to find a non-trivial integration of the adjoint action). Moreover,
we are not aware of any Poisson Lie structure on these groups,
such that the actions used later in the examples are Poisson maps.

4.) (Gauge group) P ! M right principal G-bundle, M com-
pact connected boundaryless. The group Gau(P ) of gauge trans-
formation is identified with the space of sections of P ⇥G G :=
(P⇥G)/G and thus is a Fréchet Lie group with Lie algebra gau(P ) =
�1(AdP ), the space of sections of the adjoint bundle AdP := (P ⇥
g)/G. Denote the dual of the adjoint bundle by Ad⇤ P := (P⇥g

⇤)/G,
the action of G on g

⇤ being the left coadjoint action.
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The natural pairing

(�,↵) =
Z

M
h�,↵i , � 2 gau(P ), ↵ 2 ⌦dimM(M,Ad⇤ P ),

identifies ⌦dimM(M,Ad⇤ P ) as the regular dual to gau(P ). In par-
ticular, if M is endowed with a volume form µ, then gau

⇤(P ) =
�1(Ad⇤ P ) is the dual by integration against µ:

h·, ·iAd : �1(AdP )⇥ �1(Ad⇤ P )! R, (⇢, %) 7!
Z

M
h⇢, %i µ.

Moreover, an AdG-invariant non-degenerate bilinear form h·, ·i on
g identifies gau

⇤(P ) with gau(P ) so that gau(P ) is self-dual in this
case.
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Group-valued momentum maps

Let M be G-manifold endowed with a symplectic form ! (not neces-
sarily G-invariant). A group-valued momentum map is a pair (J,),
where (G,G⇤) is a dual pair of Lie groups and J : M ! G⇤ is a
smooth map satisfying

iA⇤!+ (A, �J) = 0, 8A 2 g;

A⇤ is the fundamental vector field on M induced by A 2 g, �J 2
⌦1(M, g⇤) is the left logarithmic derivative of J, g is the Lie algebra
of G, and g

⇤ is the Lie algebra of G⇤.

Examples: 1.) (Standard momentum map) View G⇤ = g

⇤ as an
Abelian group,  : g ⇥ g

⇤ ! R duality pairing. Thus a g

⇤-valued
momentum map is J : M ! g

⇤ satisfying the usual relation

iA⇤!+dJA = 0, 8A 2 g.

Here JA = (A, J) : M ! R and the Abelian character of g

⇤ implies
dJA = (A,TJ) = (A, �J).
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2.) (Lie algebra valued momentum map) If  : g⇥g! R is a continu-
ous, weakly non-degenerate, AdG-invariant symmetric bilinear form,
one identifies formally the functional analytic dual g

⇤ with g. So,
a Lie algebra-valued momentum map is a smooth map J : M ! g

such that, for all A 2 g, the component functions JA : M ! R

defined by JA(m) = (J(m), A), m 2M , satisfy

iA⇤!+dJA = 0.

It is clear that such a Lie algebra-valued momentum map can be
regarded as a group-valued momentum map with respect to the
dual pair (G, g) where g is viewed as an Abelian Lie group.

3.) (Poisson momentum map) (M,!) finite-dimensional symplectic.
Suppose a Poisson Lie group G acts on M in a Poisson manner. G⇤

is the dual group.  : g⇥ g

⇤ ! R duality pairing. Hence a G⇤-valued
momentum map is a smooth map J : M ! G⇤ satisfying

iA⇤!+ (A, �J) = 0.

As we have explained above, this is just a reformulation of the usual
Lu momentum map relation in the context of symplectic geometry.
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In other words, our group-valued momentum map is the natural
generalization of the Poisson momentum map if the Lie group G is
not necessarily a Poisson Lie group.

4.) (Circle-valued momentum map) (M,!) symplectic manifold,
symplectic G = U(1)-action. We let G⇤ = U(1) and take  :
u(1)⇥ u(1) ! R, (x, y) = xy (usual multiplication of real numbers
under the identification u(1) = R), as the pairing between the Lie
algebras of G and G⇤. Thus, a map J : M ! U(1) is a group-valued
momentum map if and only if

i1⇤!+ �J = 0,

i.e., recover the usual definition of a circle-valued momentum map.

5.) (Symplectic torus) (V,!) symplectic vector space. A lattice
⇤ in V is a discrete subgroup of the additive group (V,+). Thus
⇤ acts naturally on V by translations. The symplectic structure is
invariant under this action and hence descends to a symplectic form
!T on the torus T = V/⇤.
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Since the translation action of V commutes with the lattice action,
the additive group (V,+) also acts symplectically on the torus. The
action of V on itself has the momentum map

J : V ! V ⇤, v 7! !(v, ·).
However, J is not invariant under the lattice action and so does
not descend to a momentum map for the induced action of V on
the torus T . Indeed, it is well-known that, for cohomological rea-
sons, the symplectic action on the torus does not admit a standard
momentum map. Rather, J transforms as

J(v + �) = J(v) + !(�, ·), � 2 ⇤.

Thus if !(�1,�2) 2 Z holds for all �1,�2 2 ⇤, then J is equivariant
with respect to the dual lattice action

⇤⇤ = {↵ 2 V ⇤ | ↵(�) 2 Z for all � 2 ⇤}.
In this case, J induces a V ⇤/⇤⇤-valued momentum map JT on the
torus T . It is interesting to note that the integrality condition
!(�1,�2) 2 Z is equivalent to !T being prequantizable.
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6.) (Cylinder-valued momentum map) In a finite-dimensional con-
text, Condevaux-Dazord-Molino [1988] introduced a momentum
map with values in the cylinder C := g

⇤/H, where H is the holonomy
group of a flat connection on some bundle constructed in terms of
the symplectic form and the action (in our language, ↵ defined in the
next section plays the role of the connection form). If the holonomy
group H is discrete, then C is a Lie group with Lie algebra g

⇤. Thus
C is a dual group. Under the identification of the Lie algebra c = g

⇤,
the cylinder-valued momentum map satisfies the defining identity
for a group valued momentum map (shown in Ortega-Ratiu [2003],
Theorem 5.2.8), and hence is a group-valued momentum map. The
group-valued momentum map for the symplectic torus discussed in
the previous example is also the cylinder-valued momentum map
(shown in Example 5.2.5 of Ortega-Ratiu [2003].

The case when the holonomy group H ✓ g

⇤ has accumulation points
is pathological both in the framework of cylinder- as well as group-
valued momentum maps; more on this later.
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Despite its general nature, a group-valued momentum map still
captures conserved quantities of the dynamical system, i.e., it has
the Noether property .

Let (M,!) be symplectic G-manifold. Suppose that the action has
a G⇤-valued momentum map J : M ! G⇤. Let h 2 C1(M) for
which the Hamiltonian vector field Xh exists and has a local flow.
(Recall that vector fields on Fréchet manifolds do not need to have
flows. This is more or less equivalent to local in time solutions of
the corresponding partial di↵erential equation.) If h is G-invariant,
then J is constant along the integral curves of Xh.
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Existence and uniqueness

Define a g

⇤-valued 1-form ↵ 2 ⌦1(M, g⇤) by iA⇤!+ (A,↵) = 0, i.e.,

(A,↵m(Xm)) = !m(Xm,A⇤m) for all Xm 2 TmM, A 2 g.

In infinite dimensions, the dual pairing  is mostly weakly non-
degenerate. In such cases, there might not exists ↵ 2 ⌦1(M, g⇤)
satisfying this identity, although ↵ is unique, if it exists. We will
assume from now on that we have such an ↵.

The definition of the group-valued momentum map implies that the
G-action on M admits a G⇤-valued momentum map if and only if
↵ = �J for some smooth function J : M ! G⇤, i.e., ↵ 2 ⌦1(M, g⇤) is
log-exact.
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Below, [↵ ^ �] means the wedge product of the g

⇤-valued forms ↵
and � on M associated to the bracket operation on g

⇤ (as the Lie
algebra of G⇤).

(i) ↵ 2 ⌦1(M, g⇤) on M defined above satisfies the Maurer-Cartan
equation

d↵+
1

2
[↵ ^ ↵] = 0

if and only if LA⇤! = 1
2(A, [↵ ^ ↵]) holds for all A 2 g. In this

case, we say that the G-action on (M,!) is G⇤-symplectic. If G⇤

is Abelian, then the notions of symplectic and G⇤-symplectic group
actions coincide.
(ii) If the G-action on M admits a G⇤-valued momentum map J :
M ! G⇤, then �J 2 ⌦1(M, g⇤) satisfies the Maurer-Cartan equation.

Strengthen this statement in terms of the period map. Need the
notion of regular Lie group.
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A Lie group G modeled on a locally convex space is regular if
for each curve c 2 C1([0,1], g), the initial value problem �⌘(t) :=
L⌘(t)�1⌘̇(t) = c(t), ⌘(0) = e, has a solution ⌘c 2 C1([0,1], G) and the
endpoint evaluation map C1([0,1], g) 3 c 7! ⌘c(1) 2 G is smooth.
G is regular ) it has a smooth exponential function. All Banach
(so, in particular, all finite dimensional) Lie groups are regular.

Fix a point m0 2M and consider a piece-wise smooth loop � : I !M

based at m0. Pulling back ↵ 2 ⌦1(M, g⇤) by � yields a g

⇤-valued
1-form �⇤↵ on the interval I. Denote by ⌘� 2 C1(I,G⇤) the solution
of the initial value problem

�⌘ = �⇤↵, ⌘(0) = e,

which exists if G⇤ is regular. Evaluating ⌘� at the endpoint 1, we
obtain the period homomorphism

per↵ : ⇡1(M,m0) 3 [�] 7! ⌘�(1) 2 G⇤,

where [�] is the homotopy class of the loop �.
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Let (M,!) be a connected symplectic manifold and (G,G⇤) a dual
pair of Lie groups. In infinite dimensions, we additionally assume
that G⇤ is a regular Lie group. Suppose that the the framed formula
has a solution ↵ 2 ⌦1(M, g⇤). Let G act on M in a G⇤-symplectic
way (i.e., ↵ satisfies the Maurer-Cartan equation d↵+ 1

2[↵ ^ ↵] =
0 () LA⇤! = 1

2(A, [↵ ^ ↵]), 8A 2 g). Then there exists a G⇤-
valued momentum map if and only if the period homomorphism
per↵ : ⇡1(M,m0) ! G⇤ is trivial. Moreover, the momentum map is
unique up to translation by a constant element h 2 G⇤.

Example of a symplectic Lie group action without group val-

ued momentum map: Let M = T

2 = (R/Z)4 3 ('1,'2, 1, 2).
Endow M with the symplectic form

! = d'1 ^ d'2 +
p
2d 1 ^ d 2.

The circle action given by � ·('1,'2, 1, 2) = ('1��,'2, 1��, 2)
is clearly symplectic. The framed equation has the solution
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↵ = d'2 +
p
2d 2.

As the generators of ⇡1(M) we take the four natural loops �i, where,
for 1  i  4, the loop �i : I !M winds once around the i-th circle
in M = (R/Z)4. The pull-back of ↵ by �1 and �3 vanishes and we
find

�⇤2↵ = dt and �⇤4↵ =
p
2dt,

where t 2 I = [0,1]. Since there are only two connected one-
dimensional Lie groups, the only possible choices for the dual group
are G⇤ = R and G⇤ = R/Z. In both cases, the initial value problem

�⌘ = �⇤↵, ⌘(0) = e

has the unique solutions ⌘�2(t) = t and ⌘�4(t) =
p
2t. Thus neither

for G⇤ = R nor for G⇤ = R/Z the period homomorphism is trivial
and hence no group-valued momentum map exists for this action.
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This example exhibits another phenomenon that is particular for
group-valued momentum maps: the action of a subgroup may not
posses a group-valued momentum map even if the bigger group
has a group-valued momentum map. In fact, the action (�1,�2) ·
('1,'2, 1, 2) = ('1 � �1,'2, 1 � �2, 2) by G = S1 ⇥ S1 has a
group-valued momentum map (which is the product of two copies of
the one discussed in example 6, the symplectic torus) but the action
of the diagonally embedded circle has no group-valued momentum
map as we have just seen.
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Equivariance and Poisson property

(G,G⇤) dual pair of Lie groups. G acts on (M,!) with group-valued
momentum map J : M ! G⇤. In which sense is J equivariant?
We assume, for simplicity, that (G⇤,+) is Abelian, identity element
0 2 G⇤. In our infinite dimensional examples this is always the case.

A left action ⌥ : G⇥G⇤ ! G⇤ is called a coconjugation action if it
integrates the coadjoint action, that is, �⌘⌥g(⌘ · µ) = Ad⇤

g�1 µ, 8g 2
G, ⌘ 2 G⇤, and µ 2 g

⇤, where
• Ad⇤ is defined with respect to the duality pairing  by

(A,Ad⇤g µ) = (Adg A, µ),

• ⌘ · µ := TeL⌘(µ) 2 T⌘G⇤,
• �⌘⌥g(⌘ · µ) 2 g

⇤ denotes the (left) logarithmic derivative at ⌘ of
the map ⌥g : G⇤ ! G⇤ in the direction ⌘ · µ 2 T⌘G⇤.

If, moreover, ⌥g(⇣+⌘) = ⌥g(⇣)+⌥g(⌘) holds for all ⇣, ⌘ 2 G⇤, then
we say that the coconjugation action is standard.
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A coconjugation does not always exist. Even it is exists, it does not
have to be unique; nonetheless, the class of coconjugation actions
is rather rigid.

Let ⌥ : G⇥G⇤ ! G⇤ be a standard coconjugation action.
1.) If ⌥̃ : G⇥G⇤ ! G⇤ is another coconjugation action (not neces-
sarily standard), then there exists a map c : G ⇥ ⇡0(G⇤) ! G⇤ such
that ⌥̃ = ⌥+ c.
2.) Conversely, a map c : G ! G⇤ defines a coconjugation action
⌥̃ := ⌥+ c if and only if c is a 1-cocycle with respect to ⌥, i.e., it
satisfies c(gh) = c(g) +⌥g(c(h)) for all g, h 2 G.

Example: The coadjoint representation is a standard coconjuga-
tion action of G on G⇤ := g

⇤. Since g

⇤ is connected, the previous
proposition establishes a bijection between coconjugation actions
on g

⇤ and 1-cocycles c : G ! g

⇤. The coconjugation action corre-
sponding to a 1-cocycle c is the a�ne action (g, µ) 7! Ad⇤

g�1 µ+c(g),
which plays an important role for classical non-equivariant momen-
tum maps (the Souriau cocycle).
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In the classical setting G⇤ ⌘ g

⇤ The derivative of a 1-cocycle c :
G! g

⇤ yields a 2-cocycle on the Lie algebra which in turn uniquely
defines an a�ne Poisson structure on g

⇤. We will show that this
extends to the general case and every coconjugation action gives
rise to a Poisson structure on G⇤.

Poisson structures in infinite dimensions need to be treated with
caution! In our case, we can use the group structure to circum-
vent most of the technical issues. In finite dimensions, there are
many equivalent ways to look at a bivector field on G⇤. In a left-
trivialization TG⇤ ' G⇤ ⇥ g

⇤, a bivector field ⇡G⇤ is a smooth map
G⇤ ! V2

g

⇤. Using reflexivity g

⇤⇤ = g, this may, equivalently, be
viewed as a map

⇡G⇤ : G
⇤ ⇥ g! g

⇤.

It is this latter form that we adopt as the definition of a bivector
field on G⇤ in the infinite-dimensional setting.
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Recall that for a smooth map f : M ! G the left logarithmic

derivative is the Lie algebra-valued 1-form �f on M defined by
�mf(X) = f(m)�1 ·Tmf(X), where X 2 TmM .

Every standard coconjugation action ⌥ : G ⇥ G⇤ ! G⇤ defines a
Poisson Lie structure ⇡G⇤ : G

⇤ ⇥ g! g

⇤ on G⇤ by

⇡G⇤(⌘, A) = �(e,⌘)⌥(A,0) = �⌘ ·Te⌥⌘(A).

Moreover, if ⌥̃ is another coconjugation (not necessarily standard)
and the map c : G⇥⇡0(G⇤)! G⇤ from from the previous proposition
satisfies c⇣+⌘ = c⇣ + c⌘ � c0 for all ⇣, ⌘ 2 G⇤, then the associated
bivector field ⇡̃G⇤ is an a�ne Poisson structure.

By construction, ⌥ and the Poisson tensor ⇡G⇤ are connected by

⌘ · ⇡G⇤(⌘, A) = Te⌥⌘(A) 2 T⌘G
⇤, 8⌘ 2 G⇤, 8A 2 g.

In Poisson geometry, actions satisfying this relation with respect to
a Poisson structure on a Lie group are called dressing actions.
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Example: Dual pair of Lie groups (Di↵µ(M), Ĥ2(M,U(1))). The
coadjoint action of a di↵eomorphism is given by pull-back. Thus a
natural coconjugation is given by

Di↵µ(M)⇥ Ĥ2(M,U(1))! Ĥ2(M,U(1)), (�, h) 7! (��1)⇤h.

The induced Poisson Lie structure on Ĥ2(M,U(1)) is defined by

Ĥ2(M,U(1))⇥ Xµ(M)! ⌦1(M)/d⌦0(M), (h,X) 7! [iXcurvh] .

Under the integration pairing, this corresponds to

Ĥ2(M,U(1))⇥ Xµ(M)⇥ Xµ(M)! R (h,X, Y ) 7!
Z

M
curvh(X,Y )µ.

For fixed h 2 Ĥ2(M,U(1)), this is precisely the Lichnerowicz co-
cycle on Xµ(M) defined by the 2-form curvh. In other words, the
Lichnerowicz cocycle is derived from the pull-back action. ⌃

In the following, we also need the concept of the left derivative
for maps whose domain is a Lie group, i.e., F : G ! N . The left
derivative of F at g 2 G in the direction A 2 g is defined by

TL
g F (A) := TgF (g ·A); thus TL

g F : g! TF (g)N linear.

So, if f : G! R, then TL
g f : g! R is linear, i.e., i.e., TL

g f 2 g

⇤ .
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Given coconjugation action, we say that the group-valued momen-
tum map is equivariant if it is G-equivariant as a map J : M ! G⇤.
For classical momentum maps, there is a well-known equivalence
between being equivariant and being a Poisson map. This is true
for our group-valued momentum map.

For a smooth function f : G⇤ ! R, the left derivative TL
⌘ f : g⇤ ! R

at ⌘ 2 G⇤ is an element of the double dual g⇤⇤.

Need to reformulate the Poisson property without using g

⇤⇤ = g.

In finite dimensions, TL
⌘ f 2 g, so if f, g 2 C1(G⇤),

{f, g}G⇤(⌘) = 
⇣

⇡G⇤(⌘,T
L
⌘ f),T

L
⌘ g

⌘

.

For J : M ! G⇤, we calculate for any X 2 TmM ,

d(f � J)(m)(X) = df(J(m))(J(m) · �mJ(X)) = (TL
J(m)f, �mJ(X))

= �!m((TL
J(m)f) ·m,X).

by the definition of the group-valued momentum map.
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Applying the definition of the momentum map again

{f � J, g � J}M(m) = $m(d(f � J)(m),d(g � J))(m)

= !m((TL
J(m)f) ·m, (TL

J(m)g) ·m).

So J is Poisson map, i.e., {f � J, g � J}M = {f, g}G⇤ � J, if and only if

!m(A ·m,B ·m) = (⇡G⇤(J(m), A), B), 8A,B 2 g, 8m 2M.

This equation no longer relies on reflexivity to make sense and so
we adopt it as the definition for J to be a Poisson map. The left-
hand side defines the so called non-equivariance cocycle �m(A,B) =
!m(A · m,B · m). Thus J is a Poisson map if and only if the Lie
algebra cocycles �m and (⇡G⇤(J(m), ·), ·) coincide.

If J : M ! G⇤ is equivariant with respect to a given coconjugation
action then it is Poisson relative to the induced Poisson tensor ⇡G⇤.

Proof: J : M ! G⇤ equivariant ) J(g ·m) = ⌥gJ(m) (⌥ coconju-
gation) Thus, �mJ(A · m) = ⇡G⇤(J(m), A) by the definition of ⇡G⇤.
On the other hand, (B, �mJ(A · m)) = !m(A · m,B · m) and the
claim follows. ⇤
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Momentum maps for group extensions

Short exact sequence of Lie groups

e �! H
◆�! K

⇡�! G �! e.

Suppose K acts symplectically on (M,!). Seek an expression of the
momentum map for the K-action in terms of the momentum maps
for the groups H and G, assuming they exist. Similar questions
occur in the context of symplectic reduction by stages.

The induced short exact sequence of Lie algebras

0 �! h

◆�! k

⇡�! g �! 0

always splits as vector spaces but not necessarily as Lie algebras.
Fix a splitting � : g ! k in the category of locally convex vector
spaces and write h�� g = k for the corresponding direct sum. Thus,
every A 2 k can be uniquely written as the sum A = ◆(AH)+ �(AG)
with AH 2 h and AG = ⇡(A) 2 g. Assume that h is self-dual with
respect to a pairing h·, ·i and (G,G⇤) is a dual pair of Lie groups.
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In this setting, if the induced action of H on M has a standard
momentum map JH : M ! h with respect to the pairing hh, hi and
there exists a map J� : M ! G⇤ satisfying

i�(AG)⇤!+ (AG, �J�) = 0, AG 2 g,

then JK = (JH, J�) : M ! h ⇥ G⇤ is a group-valued K-momentum
map with respect to the pairing (h�� g, h� g

⇤) = hh, hi+ (g, g⇤).

The identity in the statement is, formally, the momentum map
relation for G. However, we do not assume that � is a splitting on
the level of Lie algebras. Hence G, or its Lie algebra g, does not act
on M via � and J� : M ! G⇤ is not a momentum map. However,
if G happens to act on M through a di↵erent splitting � : G ! K

which is a group section of ⇡, then J� is the momentum map up to
some twisting by JH.
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In this setting, let � : g! k be a Lie algebra homomorphism splitting
the exact Lie algebra sequence above. Hence there is an induced
(infinitesimal) g-action on M . Define ⌧�� := �� � : g ! h. Its dual
map with respect to the chosen pairings is denoted by ⌧⇤�� : h⇤ ! g

⇤.
Assume that the dual group G⇤ of G is Abelian. Then

J� : M ! G⇤, m 7! J�(m) · exp(⌧⇤��JH(m))

is a group-valued momentum map for the G-action on M . More-
over, J� does not depend on the splitting �.

Determine the momentum map for the action of a subgroup.

G acts symplectically on (M,!) with group-valued momentum map
J : M ! G⇤. Let ◆ : H ! G be a Lie group homomorphism; hence
H acts through G on M . Fix a dual group H⇤ of H. Suppose that
there is a Lie group homomorphism ⇢ : G⇤ ! H⇤ whose associated
Lie algebra homomorphism ⇢ : g⇤ ! h

⇤ is the dual of ◆ : h ! g with
respect to (g, g⇤) and hh, h⇤i. Then JH := ⇢ � J : M ! H⇤ is a
group-valued momentum map for the induced H-action.
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These assumptions on ⇢ are automatically satisfied in finite-dimensions
if G is connected and ⇡1(G, e) = 1. In infinite dimensions, however,
the adjoint ⇢ : g⇤ ! h

⇤ of the linear map ◆ does not need to exist, and
even if it exists, it does not necessarily integrate to a Lie group ho-
momorphism (for this, we would need some regularity assumptions
on the dual group H⇤ (Neeb [2006], Theorem III.1.5).
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